
copro Documentation
Release 0.1.1

Jannis M. Hoch

Jun 17, 2021

CONTENTS

1 Main goal 3

2 Contents 5
2.1 Installation . 5
2.2 Model execution . 6
2.3 Settings . 7
2.4 Workflow . 11
2.5 Output . 32
2.6 Postprocessing . 34
2.7 API docs . 37

3 Authors 65

4 Indices and tables 67

Index 69

i

ii

copro Documentation, Release 0.1.1

This is the documentation of CoPro, a machine-learning tool for conflict risk projections.

A software description paper was published in JOSS.

CONTENTS 1

https://doi.org/10.21105/joss.02855
https://travis-ci.com/JannisHoch/copro
https://github.com/JannisHoch/copro/blob/dev/LICENSE
https://copro.readthedocs.io/en/latest/?badge=latest
https://github.com/JannisHoch/copro/releases/tag/v0.0.8
https://zenodo.org/badge/latestdoi/254407279
https://github.com/ellerbrock/open-source-badges/
https://doi.org/10.21105/joss.02855
https://mybinder.org/v2/gh/JannisHoch/copro/dev?filepath=%2Fexample%2Fnb_binder.ipynb

copro Documentation, Release 0.1.1

2 CONTENTS

CHAPTER

ONE

MAIN GOAL

With CoPro it is possible to apply machine-learning techniques to make projections of future areas at risk. CoPro was
developed with a rather clear application in mind, unravelling the interplay of socio-economic development, climate
change, and conflict occurrence. Nevertheless, we put a lot of emphasis on making it flexible. We hope that other,
related questions about climate and conflict can be tackled as well, and that process understanding is deepened further.

3

copro Documentation, Release 0.1.1

4 Chapter 1. Main goal

CHAPTER

TWO

CONTENTS

2.1 Installation

2.1.1 From GitHub

To install CoPro from GitHub, first clone the code. It is advised to create a separate environment first.

Note: We recommend to use Anaconda or Miniconda to install CoPro as this was used to develop and test the model.
For installation instructions, see here.

$ git clone https://github.com/JannisHoch/copro.git
$ cd path/to/copro
$ conda env create -f environment.yml

It is now possible to activate this environment with

$ conda activate copro

To install CoPro in editable mode in this environment, run this command next in the CoPro-folder:

$ pip install -e .

2.1.2 From PyPI

Todo: This is not yet supported. Feel invited to provide a pull request enabling installation via PyPI.

2.1.3 From conda

Todo: This is not yet supported. Feel invited to provide a pull request enabling installation via conda.

5

https://docs.anaconda.com/anaconda/install/

copro Documentation, Release 0.1.1

2.2 Model execution

To be able to run the model, the conda environment has to be activated first.

$ conda activate copro

2.2.1 Runner script

To run the model, a command line script is provided. The usage of the script is as follows:

Usage: copro_runner [OPTIONS] CFG

Main command line script to execute the model.
All settings are read from cfg-file.
One cfg-file is required argument to train, test, and evaluate the model.
Multiple classifiers are trained based on different train-test data combinations.
Additional cfg-files for multiple projections can be provided as optional arguments,␣
→˓whereby each file corresponds to one projection to be made.
Per projection, each classifiers is used to create separate projection outcomes per time␣
→˓step (year).
All outcomes are combined after each time step to obtain the common projection outcome.

Args: CFG (str): (relative) path to cfg-file

Options:
-plt, --make_plots add additional output plots
-v, --verbose command line switch to turn on verbose mode

Help information can be accessed with

$ copro_runner --help

All data and settings are retrieved from the configuration-file (cfg-file, see Settings) which needs to be provided as
command line argument. In the cfg-file, the various settings of the simulation are defined.

A typical command would thus look like this:

$ copro_runner settings.cfg

In case issues occur, updating setuptools may be required.

$ pip3 install --upgrade pip setuptools

6 Chapter 2. Contents

copro Documentation, Release 0.1.1

2.2.2 Binder

There is also a notebook running on Binder.

Please check it out to go through the model execution step-by-step and interactively explore the functionalities of CoPro.

2.3 Settings

2.3.1 The cfg-file

The main model settings need to be specified in a configuration file (cfg-file). This file looks like this.

[general]
input_dir=./path/to/input_data
output_dir=./path/to/store/output
1: all data. 2: leave-one-out model. 3: single variable model. 4: dubbelsteenmodel
Note that only 1 supports sensitivity_analysis
model=1
verbose=True

[settings]
start year
y_start=2000
end year
y_end=2012

[PROJ_files]
cfg-files
proj_nr_1=./path/to/projection/settings_proj.cfg

[pre_calc]
if nothing is specified, the XY array will be stored in output_dir
if XY already pre-calculated, then provide path to npy-file
XY=

[extent]
shp=folder/with/polygons.shp

[conflict]
either specify path to file or state 'download' to download latest PRIO/UCDP dataset
conflict_file=folder/with/conflict_data.csv
min_nr_casualties=1
1=state-based armed conflict. 2=non-state conflict. 3=one-sided violence
type_of_violence=1,2,3

[climate]
shp=folder/with/climate_zones.shp
define either one or more classes (use abbreviations!) or specify nothing for not␣
→˓filtering
zones=
code2class=folder/with/classification_codes.txt

(continues on next page)

2.3. Settings 7

https://mybinder.org/v2/gh/JannisHoch/copro/dev?filepath=%2Fexample%2Fnb_binder.ipynb

copro Documentation, Release 0.1.1

(continued from previous page)

[data]
specify the path to the nc-file, whether the variable shall be log-transformed (True,␣
→˓False), and which statistical function should be applied
these three settings need to be separated by a comma
NOTE: variable name here needs to be identical with variable name in nc-file
NOTE: only statistical functions supported by rasterstats are valid
precipitation=folder/with/precipitation_data.nc,False,mean
temperature=folder/with/temperature_data.nc,False,mean
population=folder/with/population_data.nc,True,sum

[machine_learning]
choose from: MinMaxScaler, StandardScaler, RobustScaler, QuantileTransformer
scaler=QuantileTransformer
choose from: NuSVC, KNeighborsClassifier, RFClassifier
model=RFClassifier
train_fraction=0.7
number of repetitions
n_runs=10

Note: All paths for input_dir, output_dir, and in [PROJ_files] are relative to the location of the cfg-file.

Important: Empty spaces should be avoided in the cfg-file, besides for those lines commented out with ‘#’.

2.3.2 The sections

Here, the different sections are explained briefly.

[general]

input_dir: (relative) path to the directory where the input data is stored. This requires all input data to be stored in
one main folder, sub-folders are possible.

output_dir: (relative) path to the directory where output will be stored. If the folder does not exist yet, it will be
created. CoPro will automatically create the sub-folders _REF for output for the reference run, and _PROJ for output
from the (various) projection runs.

model: the type of simulation to be run can be specified here. Currently, for different models are available:

1. ‘all data’: all variable values are used to fit the model and predict results.

2. ‘leave one out’: values of each variable are left out once, resulting in n-1 runs with n being the number of
variables. This model can be used to identify the relative influence of one variable within the variable set/

3. ‘single variables’: each variable is used as sole predictor once. With this model, the explanatory power of each
variable on its own can be assessed.

4. ‘dubbelsteen’: the relation between variables and conflict are abolished by shuffling the binary conflict data
randomly. By doing so, the lower boundary of the model can be estimated.

8 Chapter 2. Contents

copro Documentation, Release 0.1.1

Note: All model types except ‘all_data’ will be deprecated in a future release.

verbose: if True, additional messages will be printed.

[settings]

y_start: the start year of the reference run.

y_end: the end year of the reference run. The period between y_start and y_end will be used to train and test the
model.

y_proj: the end year of the projection run. The period between y_end and y_proj will be used to make annual
projections.

[PROJ_files]

A key section. Here, one (slightly different) cfg-file per projection needs to be provided. This way, multiple projection
runs can be defined from within the “main” cfg-file.

The conversion is that the projection name is defined as value here. For example, the projections “SSP1” and “SSP2”
would be defined as

SSP1=/path/to/ssp1.cfg
SSP2=/path/to/ssp2.cfg

A cfg-file for a projection is shorter than the main cfg-file used as command line argument and looks like this:

[general]
input_dir=./path/to/input_data
verbose=True

[settings]
year for which projection is to be made
y_proj=2050

[data]
specify the path to the nc-file, whether the variable shall be log-transformed (True,␣
→˓False), and which statistical function should be applied
these three settings need to be separated by a comma
NOTE: variable name here needs to be identical with variable name in nc-file
NOTE: only statistical functions supported by rasterstats are valid
precipitation=folder/with/precipitation_data.nc,False,mean
temperature=folder/with/temperature_data.nc,False,mean
population=folder/with/population_data.nc,True,sum

2.3. Settings 9

copro Documentation, Release 0.1.1

[pre_calc]

XY: if the XY-data was already pre-computed in a previous run and stored as npy-file, it can be specified here and will be
loaded from file to save time. If nothing is specified, the model will save the XY-data by default to the output directory
as XY.npy.

[extent]

shp: the provided shape-file defines the boundaries for which the model is applied. At the same time, it also defines at
which aggregation level the output is determined.

Note: The shp-file can contain multiple polygons covering the study area. Their size defines the output aggregation
level. It is also possible to provide only one polygon, but model behaviour is not well tested for this case.

[conflict]

conflict_file: path to the csv-file containing the conflict dataset. It is also possible to define download, then the
latest conflict dataset (currently version 20.1) is downloaded and used as input.

min_nr_casualties: minimum number of reported casualties required for a conflict to be considered in the model.

type_of_violence: the types of violence to be considered can be specified here. Multiple values can be specified.
Types of violence are:

1. ‘state-based armed conflict’: a contested incompatibility that concerns government and/or territory where the
use of armed force between two parties, of which at least one is the government of a state, results in at least 25
battle-related deaths in one calendar year.

2. ‘non-state conflict’: the use of armed force between two organized armed groups, neither of which is the gov-
ernment of a state, which results in at least 25 battle-related deaths in a year.

3. ‘one-sided violence’: the deliberate use of armed force by the government of a state or by a formally organized
group against civilians which results in at least 25 deaths in a year.

Important: CoPro currently only works with UCDP data.

[climate]

shp: the provided shape-file defines the areas of the different Köppen-Geiger climate zones.

zones: abbreviations of the climate zones to be considered in the model. Can either be ‘None’ or one or multiple
abbreviations.

code2class: converting the abbreviations to class-numbers used in the shp-file.

Warning: The code2class-file should not be altered!

10 Chapter 2. Contents

copro Documentation, Release 0.1.1

[data]

In this section, all variables to be used in the model need to be provided. The paths are relative to input_dir. Only
netCDF-files with annual data are supported.

The main convention is that the name of the file agrees with the variable name in the file. For example, if the variable
precipitation is provided in a nc-file, this should be noted as follows

[data]
precipitation=folder/with/precipitation_data.nc

CoPro furthermore requires information whether the values sampled from a file are ought to be log-transformed.

Besides, it is possible to define a statistical function that is applied when sampling from file per polygon of the
shp-file. CoPro makes use of the zonal_stats function available within rasterstats.

To determine the log-scaled mean value of precipitation per polygon, the following notation is required:

[data]
precipitation=folder/with/precipitation_data.nc,False,mean

[machine_learning]

scaler: the scaling algorithm used to scale the variable values to comparable scales. Currently supported are

• MinMaxScaler;

• StandardScaler;

• RobustScaler;

• QuantileTransformer.

model: the machine learning algorithm to be applied. Currently supported are

• NuSVC;

• KNeighborsClassifier;

• RFClassifier.

train_fraction: the fraction of the XY-data to be used to train the model. The remaining data (1-train_fraction)
will be used to predict and evaluate the model.

n_runs: the number of classifiers to use.

2.4 Workflow

This page provides a short example workflow in Jupyter Notebooks. It is designed such that the main steps, features,
assumptions, and outcomes of CoPro become clear.

As model input data, the data set downloadable from Zenodo was used.

Even though the model can be perfectly executed using notebooks, the main (and more convenient) way of model
execution is the command line script (see Runner script).

An interactive version of the content shown here can be accessed via Binder.

2.4. Workflow 11

https://pythonhosted.org/rasterstats/rasterstats.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://zenodo.org/record/4297295
https://mybinder.org/v2/gh/JannisHoch/copro/dev?filepath=%2Fexample%2Fnb_binder.ipynb

copro Documentation, Release 0.1.1

2.4.1 Model initialization and selection procedure

In this notebook, we will show how CoPro is initialized and the selection procedure of spatial aggregation units and
conflicts works.

Model initialization

Start with loading the required packages.

[1]: from copro import utils, selection, plots, data

%matplotlib inline

import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import os, sys
import warnings
warnings.simplefilter("ignore")

For better reproducibility, the version numbers of all key packages used to run this notebook are provided.

[2]: utils.show_versions()

Python version: 3.7.8 | packaged by conda-forge | (default, Jul 31 2020, 01:53:57) [MSC␣
→˓v.1916 64 bit (AMD64)]
copro version: 0.0.8
geopandas version: 0.9.0
xarray version: 0.15.1
rasterio version: 1.1.0
pandas version: 1.0.3
numpy version: 1.18.1
scikit-learn version: 0.23.2
matplotlib version: 3.2.1
seaborn version: 0.11.0
rasterstats version: 0.14.0

The configurations-file (cfg-file)

In the configurations-file (cfg-file), all the settings for the analysis are defined. The cfg-file contains, amongst others,
all paths to input files, settings for the machine-learning model, and the various selection criteria for spatial aggregation
units and conflicts. Note that the cfg-file can be stored anywhere, not per se in the same directory where the model
data is stored (as in this example case). Make sure that the paths in the cfg-file are updated if you use relative paths and
change the folder location of th cfg-file!

[3]: settings_file = 'example_settings.cfg'

Based on this cfg-file, the set-up of the run can be initialized. Here, the cfg-file is parsed (i.e. read) and all settings and
paths become ‘known’ to the model. Also, the output folder is created (if it does not exist yet) and the cfg-file is copied
to the output folder for improved reusability.

If you set verbose=True, then additional statements are printed during model execution. This can help to track the
behaviour of the model.

12 Chapter 2. Contents

copro Documentation, Release 0.1.1

[4]: main_dict, root_dir = utils.initiate_setup(settings_file, verbose=False)

CoPro version 0.0.8
For information about the model, please visit https://copro.readthedocs.io/
Copyright (2020-2021): Jannis M. Hoch, Sophie de Bruin, Niko Wanders
Contact via: j.m.hoch@uu.nl
The model can be used and shared under the MIT license

INFO: reading model properties from example_settings.cfg
INFO: verbose mode on: False
INFO: saving output to main folder C:\Users\hoch0001\Documents_code\copro\example\./OUT

One of the outputs is a dictionary (here main_dict) containing the parsed configurations (they are stored in computer
memory, therefore the slighly odd specification) as well as output directories of both the reference run and the various
projection runs specified in the cfg-file.

For the reference run, only the respective entries are required.

[5]: config_REF = main_dict['_REF'][0]
print('the configuration of the reference run is {}'.format(config_REF))
out_dir_REF = main_dict['_REF'][1]
print('the output directory of the reference run is {}'.format(out_dir_REF))

the configuration of the reference run is <configparser.RawConfigParser object at␣
→˓0x000001FBC8FA9D08>
the output directory of the reference run is C:\Users\hoch0001\Documents_code\copro\
→˓example\./OUT_REF

Filter conflicts and spatial aggregation units

Background

As conflict database, we use the UCDP Georeferenced Event Dataset. Not all conflicts of the database may need to
be used for a simulation. This can be, for example, because they belong to a non-relevant type of conflict we are not
interested in, or because it is simply not in our area-of-interest. Therefore, it is possible to filter the conflicts on various
properties:

1. min_nr_casualties: minimum number of casualties of a reported conflict;

2. type_of_violence: 1=state-based armed conflict; 2=non-state conflict; 3=one-sided violence.

To unravel the interplay between climate and conflict, it may be beneficial to run the model only for conflicts in particular
climate zones. It is hence also possible to select only those conflcits that fall within a climate zone following the
Koeppen-Geiger classification.

2.4. Workflow 13

https://ucdp.uu.se/downloads/index.html#ged_global
http://koeppen-geiger.vu-wien.ac.at/

copro Documentation, Release 0.1.1

Selection procedure

In the selection procedure, we first load the conflict database and convert it to a georeferenced dataframe (geo-
dataframe). To define the study area, a shape-file containing polygons (in this case water provinces) is loaded and
converted to geo-dataframe as well.

We then apply the selection criteria (see above) as specified in the cfg-file, and keep the remaining data points and
associated polygons.

[7]: conflict_gdf, selected_polygons_gdf, global_df = selection.select(config_REF, out_dir_
→˓REF, root_dir)

INFO: reading csv file to dataframe C:\Users\hoch0001\Documents_code\copro\example\./
→˓example_data\UCDP/ged201.csv
INFO: filtering based on conflict properties.

With the chosen settings, the following picture of polygons and conflict data points is obtained.

[8]: fig, ax= plt.subplots(1, 1, figsize=(20,10))
conflict_gdf.plot(ax=ax, c='r', column='best', cmap='magma',

vmin=int(config_REF.get('conflict', 'min_nr_casualties')),␣
→˓vmax=conflict_gdf.best.mean(),

legend=True,
legend_kwds={'label': "# casualties", 'orientation': "vertical", 'pad':

→˓ 0.05})
selected_polygons_gdf.boundary.plot(ax=ax);

14 Chapter 2. Contents

copro Documentation, Release 0.1.1

It’s nicely visible that for this example-run, not all provinces are considered but we focus on specified climate zones
only.

Temporary files

To be able to also run the following notebooks, some of the data has to be written to file temporarily. This is not part
of the CoPro workflow but merely needed to split up the workflow in different notebooks outlining the main steps to
go through when using CoPro.

[9]: if not os.path.isdir('temp_files'):
os.makedirs('temp_files')

[10]: conflict_gdf.to_file(os.path.join('temp_files', 'conflicts.shp'))
selected_polygons_gdf.to_file(os.path.join('temp_files', 'polygons.shp'))

[11]: global_df['ID'] = global_df.index.values
global_arr = global_df.to_numpy()
np.save(os.path.join('temp_files', 'global_df'), global_arr)

2.4. Workflow 15

copro Documentation, Release 0.1.1

2.4.2 Obtaining samples matrix and target values

In this notebook, we will show how CoPro reads the input data and derives the samples matrix and target values needed
to establish a machine-learning model.

Preparations

Start with loading the required packages.

[1]: from copro import utils, pipeline, data

%matplotlib inline

import matplotlib.pyplot as plt
import pandas as pd
import geopandas as gpd
import os, sys
import warnings
from shutil import copyfile
warnings.simplefilter("ignore")

For better reproducibility, the version numbers of all key packages used to run this notebook are provided.

[2]: utils.show_versions()

Python version: 3.7.8 | packaged by conda-forge | (default, Jul 31 2020, 01:53:57) [MSC␣
→˓v.1916 64 bit (AMD64)]
copro version: 0.0.8
geopandas version: 0.9.0
xarray version: 0.15.1
rasterio version: 1.1.0
pandas version: 1.0.3
numpy version: 1.18.1
scikit-learn version: 0.23.2
matplotlib version: 3.2.1
seaborn version: 0.11.0
rasterstats version: 0.14.0

To be able to also run this notebooks, some of the previously saved temporary files need to be loaded.

[3]: conflict_gdf = gpd.read_file(os.path.join('temp_files', 'conflicts.shp'))
selected_polygons_gdf = gpd.read_file(os.path.join('temp_files', 'polygons.shp'))

The configurations-file (cfg-file)

To be able to continue the simulation with the same settings as in the previous notebook, the cfg-file has to be read
again and the model needs to be initialised subsequently. This is not needed if CoPro is run from command line. Please
see the previous notebook for additional information.

[4]: settings_file = 'example_settings.cfg'

[5]: main_dict, root_dir = utils.initiate_setup(settings_file, verbose=False)

16 Chapter 2. Contents

copro Documentation, Release 0.1.1

CoPro version 0.0.8
For information about the model, please visit https://copro.readthedocs.io/
Copyright (2020-2021): Jannis M. Hoch, Sophie de Bruin, Niko Wanders
Contact via: j.m.hoch@uu.nl
The model can be used and shared under the MIT license

INFO: reading model properties from example_settings.cfg
INFO: verbose mode on: False
INFO: saving output to main folder C:\Users\hoch0001\Documents_code\copro\example\./OUT

[6]: config_REF = main_dict['_REF'][0]
out_dir_REF = main_dict['_REF'][1]

Reading the files and storing the data

Background

This is an essential part of CoPro. For a machine-learning model to work, it requires a samples matrix (X), representing
here the socio-economic and hydro-climatic ‘drivers’ of conflict, and target values (Y) representing the (observed)
conflicts themselves. By fitting a machine-learning model, a relation between X and Y is established, which in turn
can be used to make projections.

Additional information can be found on scikit-learn.

Since CoPro simulates conflict risk spatially explicit for each polygons (here water provinces), it is furthermore needed
to be able to associate each polygon with the corresponding data points in X and Y. We therefore also keep a polygon-ID
and its geometry, and track it throughout the modelling chain.

Implementation

CoPro goes through all model years as specified in the cfg-file. Per year, CoPro loops over all polygons remaining after
the selection procedure (see previous notebook) and does the following to obtain the X-data.

1. Assign ID to polygon and retrieve geometry information;

2. Calculate a statistical value per polygon from each input file specified in the cfg-file in section ‘data’. Which
statistical value is ought to be computed needs to be specified in the cfg-file. In the cfg-file, it’s furthermore
possible to specify whether values are ought to be log-transformed.

Note that CoPro applies a 1 year time-lag by default. That means that for a given year J, the data from year J-1 is read.
This is to avoid issues with backwards reversibility, i.e. we assume that the driver results in conflict (or not) with one
year delay and not immediately in the same year.

And to obtain the Y-data:

1. Assign a Boolean value whether a conflict took place in a polygon or not - the number of casualties or conflicts
per year is not relevant in thise case.

All information is stored in a X-array and a Y-array. The X-array has 2+n columns whereby n denotes the number of
samples provided. The Y-array has obviously only 1 column, consisting of zeros and ones. In both arrays is the number
of rows determined as number of years times the number of polygons. In case a row contains a missing value (e.g.
because one input data does not cover this polygon), the entire row is removed from the XY-array.

2.4. Workflow 17

https://scikit-learn.org/stable/getting_started.html#fitting-and-predicting-estimator-basics

copro Documentation, Release 0.1.1

Note that the sample values can still range a lot depending on their units, measurement, etc. In the next notebook, the
X-data will be scaled to be able to compare the different values in the samples matrix.

[7]: X, Y = pipeline.create_XY(config_REF, out_dir_REF, root_dir, selected_polygons_gdf,␣
→˓conflict_gdf)

INFO: reading data for period from 2000 to 2012
INFO: skipping first year 2000 to start up model
INFO: entering year 2001
INFO: entering year 2002
INFO: entering year 2003
INFO: entering year 2004
INFO: entering year 2005
INFO: entering year 2006
INFO: entering year 2007
INFO: entering year 2008
INFO: entering year 2009
INFO: entering year 2010
INFO: entering year 2011
INFO: entering year 2012

Saving data to file

Depending on sample and file size, obtaining the X-array and Y-array can be time-consuming. Therefore, CoPro
automatically stores a combined XY-array as npy-file to the output folder if not specified otherwise in the cfg-file.
With this file, future runs using the same data but maybe different machine-learning settings can be executed in less
time.

Let’s check if this files exists.

[8]: os.path.isfile(os.path.join(out_dir_REF, 'XY.npy'))

[8]: True

Temporary files

By default, a binary map of conflict per polygon for the last year of the simulation period is stored to the output directory.
Since the output directory is created from scratch at each model initalisation, we need to temporarily store this map in
another folder to be used in subsequent notebooks.

[9]: %%capture

for root, dirs, files in os.walk(os.path.join(out_dir_REF, 'files')):
for file in files:

fname = file
print(fname)
copyfile(os.path.join(out_dir_REF, 'files', str(fname)),

os.path.join('temp_files', str(fname)))

18 Chapter 2. Contents

copro Documentation, Release 0.1.1

2.4.3 Initializing and executing the machine-learning model

In this notebook, we will show how CoPro creates, trains, and tests a machine-learning model based on the settings
and data shown in the previous notebooks.

Preparations

Start with loading the required packages.

[1]: from copro import utils, pipeline, evaluation, plots, machine_learning

%matplotlib inline

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import geopandas as gpd
import seaborn as sbs
import os, sys
from sklearn import metrics
from shutil import copyfile
import warnings
warnings.simplefilter("ignore")

For better reproducibility, the version numbers of all key packages used to run this notebook are provided.

[2]: utils.show_versions()

Python version: 3.7.8 | packaged by conda-forge | (default, Jul 31 2020, 01:53:57) [MSC␣
→˓v.1916 64 bit (AMD64)]
copro version: 0.0.8
geopandas version: 0.9.0
xarray version: 0.15.1
rasterio version: 1.1.0
pandas version: 1.0.3
numpy version: 1.18.1
scikit-learn version: 0.23.2
matplotlib version: 3.2.1
seaborn version: 0.11.0
rasterstats version: 0.14.0

To be able to also run this notebooks, some of the previously saved data needs to be loaded.

[3]: conflict_gdf = gpd.read_file(os.path.join('temp_files', 'conflicts.shp'))
selected_polygons_gdf = gpd.read_file(os.path.join('temp_files', 'polygons.shp'))

[4]: global_arr = np.load(os.path.join('temp_files', 'global_df.npy'), allow_pickle=True)
global_df = pd.DataFrame(data=global_arr, columns=['geometry', 'ID'])
global_df.set_index(global_df.ID, inplace=True)
global_df.drop(['ID'] , axis=1, inplace=True)

2.4. Workflow 19

copro Documentation, Release 0.1.1

The configurations-file (cfg-file)

To be able to continue the simulation with the same settings as in the previous notebook, the cfg-file has to be read
again and the model needs to be initialised subsequently. This is not needed if CoPro is run from command line. Please
see the first notebook for additional information.

[5]: settings_file = 'example_settings.cfg'

[6]: main_dict, root_dir = utils.initiate_setup(settings_file, verbose=False)

CoPro version 0.0.8
For information about the model, please visit https://copro.readthedocs.io/
Copyright (2020-2021): Jannis M. Hoch, Sophie de Bruin, Niko Wanders
Contact via: j.m.hoch@uu.nl
The model can be used and shared under the MIT license

INFO: reading model properties from example_settings.cfg
INFO: verbose mode on: False
INFO: saving output to main folder C:\Users\hoch0001\Documents_code\copro\example\./OUT

[7]: config_REF = main_dict['_REF'][0]
out_dir_REF = main_dict['_REF'][1]

Loading the XY-data

To avoid reading the XY-data again (see previous notebook for this), we can load the data directly from a XY.npy file
which is automatically written to the output path. We saw that this file was created, but since no XY-data is specified
in the config-file initially, we have to set the path manually. Note that this de-tour is only necessary due to the splitting
of the workflow in different notebooks!

[8]: config_REF.set('pre_calc', 'XY', str(os.path.join(out_dir_REF, 'XY.npy')))

To double-check, see if the file manually specifid actually exists.

[9]: os.path.isfile(config_REF.get('pre_calc', 'XY'))

[9]: True

The scence is set now and we can read the X-array and Y-array from file.

[10]: X, Y = pipeline.create_XY(config_REF, out_dir_REF, root_dir, selected_polygons_gdf,␣
→˓conflict_gdf)

INFO: loading XY data from file C:\Users\hoch0001\Documents_code\copro\example\./OUT_
→˓REF\XY.npy

20 Chapter 2. Contents

copro Documentation, Release 0.1.1

Scaler and classifier

Background

In principle, one can put all kind of data into the samples matrix X, leading to a wide spread of orders of magni-
tude, units, distributions etc. It is therefore needed to scale (or transform) the data in the X-array such that sensible
comparisons and computations are possible. To that end, a scaling technique is applied.

Once there is a scaled X-array, a machine-learning model can be fitted with it together with the target values Y.

Implementation

CoPro supports four different scaling techniques. For more info, see the scikit-learn documentation.

1. MinMaxScaler;

2. StandardScaler;

3. RobustScaler;

4. QuantileTransformer.

From the wide range of machine-learning model, CoPro employs three different ones from the categorie of supervised
learning.

1. NuSVC;

2. KNeighborsClassifier;

3. RFClassifier.

Note that CoPro uses pretty much the default parameterization of the scalers and models. An extensive GridSearchCV
did not show any significant improvements when changing the parameters. There is currently no way to provide other
parameters than those currently set.

Let’s see which scaling technique and which supervised classifiers is specified for the example-run.

[11]: scaler, clf = pipeline.prepare_ML(config_REF)
print('As scaling technique, it is used: {}'.format(scaler))
print('As supervised classifing technique, it is used: {}'.format(clf))

As scaling technique, it is used: QuantileTransformer(random_state=42)
As supervised classifing technique, it is used: RandomForestClassifier(class_weight={1:␣
→˓100}, n_estimators=1000,

random_state=42)

Output initialization

Since the model is run multiple times to test various random train-test data combinations, we need to initialize a few
lists first to append the output per run.

[12]: out_X_df = evaluation.init_out_df()
out_y_df = evaluation.init_out_df()

[13]: out_dict = evaluation.init_out_dict()

2.4. Workflow 21

https://scikit-learn.org/stable/getting_started.html#transformers-and-pre-processors
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

copro Documentation, Release 0.1.1

[14]: trps, aucs, mean_fpr = evaluation.init_out_ROC_curve()

ML-model execution

The pudels kern! This is where the magic happens, and not only once. To make sure that any conincidental results are
ruled out, we run the model multiple times. Thereby, always different parts of the XY-array are used for training and
testing. By using a sufficient number of runs and averaging the overall results, we should be able to get a good picture
of what the model is capable of. The number of runs as well as the split between training and testing data needs to be
specified in the cfg-file.

Per repetition, the model is evaluated. The main evaluation metric is the mean ROC-score and **ROC-curve**, plotted
at the end of all runs. Additional evaluation metrics are computed as described below.

[15]: # #- create plot instance
fig, (ax1) = plt.subplots(1, 1, figsize=(20,10))

#- go through all n model executions
for n in range(config_REF.getint('machine_learning', 'n_runs')):

print('INFO: run {} of {}'.format(n+1, config_REF.getint('machine_learning', 'n_runs
→˓')))

#- run machine learning model and return outputs
X_df, y_df, eval_dict = pipeline.run_reference(X, Y, config_REF, scaler, clf, out_

→˓dir_REF, run_nr=n+1)

#- select sub-dataset with only datapoints with observed conflicts
X1_df, y1_df = utils.get_conflict_datapoints_only(X_df, y_df)

#- append per model execution
out_X_df = evaluation.fill_out_df(out_X_df, X_df)
out_y_df = evaluation.fill_out_df(out_y_df, y_df)
out_dict = evaluation.fill_out_dict(out_dict, eval_dict)

#- plot ROC curve per model execution
tprs, aucs = plots.plot_ROC_curve_n_times(ax1, clf, X_df.to_numpy(), y_df.y_test.to_

→˓list(),
trps, aucs, mean_fpr)

#- plot mean ROC curve
plots.plot_ROC_curve_n_mean(ax1, tprs, aucs, mean_fpr)

plt.savefig('../docs/_static/roc_curve.png', dpi=300, bbox_inches='tight')

INFO: run 1 of 10

No handles with labels found to put in legend.

INFO: run 2 of 10

No handles with labels found to put in legend.

INFO: run 3 of 10

No handles with labels found to put in legend.

22 Chapter 2. Contents

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_roc_curve.html

copro Documentation, Release 0.1.1

INFO: run 4 of 10

No handles with labels found to put in legend.

INFO: run 5 of 10

No handles with labels found to put in legend.

INFO: run 6 of 10

No handles with labels found to put in legend.

INFO: run 7 of 10

No handles with labels found to put in legend.

INFO: run 8 of 10

No handles with labels found to put in legend.

INFO: run 9 of 10

No handles with labels found to put in legend.

INFO: run 10 of 10

No handles with labels found to put in legend.

Model evaluation

For all data points

During the model runs, the computed model evaluation scores per model execution were stored to a dictionary. Cur-
rently, the evaluation scores used are:

• **Accuracy**: the fraction of correct predictions;

• **Precision**: the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false positives.
The precision is intuitively the ability of the classifier not to label as positive a sample that is negative;

2.4. Workflow 23

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html

copro Documentation, Release 0.1.1

• **Recall**: the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false negatives.
The recall is intuitively the ability of the classifier to find all the positive samples;

• **F1 score**: the F1 score can be interpreted as a weighted average of the precision and recall, where an F1
score reaches its best value at 1 and worst score at 0;

• **Cohen-Kappa score**: is used to measure inter-rater reliability. It is generally thought to be a more robust
measure than simple percent agreement calculation, as takes into account the possibility of the agreement oc-
curring by chance.

• **Brier score**: the smaller the Brier score, the better, hence the naming with “loss”. The lower the Brier score
is for a set of predictions, the better the predictions are calibrated. Note that the Brier loss score is relatively
sensitive for imbalanced datasets;

• **ROC score**: a value of 0.5 suggests no skill, e.g. a curve along the diagonal, whereas a value of 1.0 suggests
perfect skill, all points along the left y-axis and top x-axis toward the top left corner. A value of 0.0 suggests
perfectly incorrect predictions. Note that the ROC score is relatively insensitive for imbalanced datasets.

• **AP score**: the average_precision_score function computes the average precision (AP) from prediction
scores. The value is between 0 and 1 and higher is better.

Let’s check the mean scores over all runs:

[16]: for key in out_dict:

print('average {0} of run with {1} repetitions is {2:0.3f}'.format(key, config_REF.
→˓getint('machine_learning', 'n_runs'), np.mean(out_dict[key])))

average Accuracy of run with 10 repetitions is 0.883
average Precision of run with 10 repetitions is 0.717
average Recall of run with 10 repetitions is 0.496
average F1 score of run with 10 repetitions is 0.585
average Cohen-Kappa score of run with 10 repetitions is 0.520
average Brier loss score of run with 10 repetitions is 0.090
average ROC AUC score of run with 10 repetitions is 0.863
average AP score of run with 10 repetitions is 0.636

So how are, e.g. accuracy, precision, and recall distributed?

[17]: plots.metrics_distribution(out_dict, metrics=['Accuracy', 'Precision', 'Recall'],␣
→˓figsize=(20, 5));

Based on all data points, the **confusion matrix** can be plotted. This is a relatively straightforward way to visualize
how good (i.e. correct) the observations are predicted by the model. Ideally, all True label and Predicted label
pairs have the highest values.

24 Chapter 2. Contents

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.brier_score_loss.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

copro Documentation, Release 0.1.1

[18]: fig, ax = plt.subplots(1, 1, figsize=(8, 8))
metrics.plot_confusion_matrix(clf, out_X_df.to_numpy(), out_y_df.y_test.to_list(),␣
→˓ax=ax);

In out_y_df, all predictions are stored. This includes the actual value y_test (ie. whether a conflict was observed
or not) and the predicted outcome y_pred together with the probabilities of this outcome. Additionally, CoPro adds a
column with a Boolean indicator whether the predictions was correct (y_test=y_pred) or not.

[19]: out_y_df.head()

[19]: ID geometry y_test y_pred \
0 1009 POLYGON ((29 6.696147705436432, 29.05159624587... 0 0
1 1525 POLYGON ((0.5770535604073238 6, 0.578418291470... 0 0
2 1307 (POLYGON ((-14.94260162796269 16.6312412609754... 0 0
3 118 POLYGON ((25.29046121561265 -18.03749999982506... 0 0
4 45 POLYGON ((9.821052248962189 28.22336190952456,... 0 0

y_prob_0 y_prob_1 correct_pred
0 0.989 0.011 1
1 0.998 0.002 1
2 0.976 0.024 1
3 0.914 0.086 1
4 0.966 0.034 1

2.4. Workflow 25

copro Documentation, Release 0.1.1

Per unique polygon

Thus far, we merely looked at numerical scores for all predcitions. This of course tells us a lot about the quality of the
machine-learning model, but not so much about how this looks like spatially. We therefore combine the observations
and predictions made with the associated polygons based on a ‘global’ dataframe functioning as a look-up table. By this
means, each model prediction (ie. each row in out_y_df) can be connected to its polygon using a unique polygon-ID.

[20]: df_hit, gdf_hit = evaluation.polygon_model_accuracy(out_y_df, global_df)

First, let’s have a look at how often each polygon occurs in the all test samples, i.e. those obtained by appending the
test samples per model execution. Besides, the overall relative distribution is visualized.

[21]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
gdf_hit.plot(ax=ax1, column='nr_predictions', legend=True, cmap='Blues')
selected_polygons_gdf.boundary.plot(ax=ax1, color='0.5')
ax1.set_title('number of predictions made per polygon')
sbs.distplot(df_hit.nr_predictions.values, ax=ax2)
ax2.set_title('distribution of predictions');

By repeating the model n times, the aim is to represent all polygons in the resulting test sample. The fraction is computed
below.

Note that is should be close to 100 % but may be slightly less. This can happen if input variables have no data for one
polygon, leading to a removal of those polygons from the analysis. Or because some polygons and input data may not
overlap.

[22]: print('{0:0.2f} % of all active polygons are considered in test sample'.format(len(gdf_
→˓hit)/len(selected_polygons_gdf)*100))

100.00 % of all active polygons are considered in test sample

By aggregating results per polygon, we can now assess model output spatially. Three main aspects are presented here:

1. The total number of conflict events per water province;

26 Chapter 2. Contents

copro Documentation, Release 0.1.1

2. The chance of a correct prediction, defined as the ratio of number of correct predictions made to overall number
of predictions made;

3. The mean conflict probability, defined as the mean value of all probabilites of conflict to occur (y_prob_1) in a
polygon.

[24]: fig, axes = plt.subplots(1, 3, figsize=(20, 20), sharex=True, sharey=True)

gdf_hit.plot(ax=axes[0], column='nr_observed_conflicts', legend=True, cmap='Reds',
legend_kwds={'label': "nr_observed_conflicts", 'orientation': "horizontal",

→˓'fraction': 0.045, 'pad': 0.05})
selected_polygons_gdf.boundary.plot(ax=axes[0], color='0.5')

gdf_hit.plot(ax=axes[1], column='fraction_correct_predictions', legend=True,
legend_kwds={'label': "fraction_correct_predictions", 'orientation':

→˓"horizontal", 'fraction': 0.045, 'pad': 0.05})
selected_polygons_gdf.boundary.plot(ax=axes[1], color='0.5')

gdf_hit.plot(ax=axes[2], column='probability_of_conflict', legend=True, cmap='Blues',␣
→˓vmin=0, vmax=1,

legend_kwds={'label': "mean conflict probability", 'orientation':
→˓"horizontal", 'fraction': 0.045, 'pad': 0.05})
selected_polygons_gdf.boundary.plot(ax=axes[2], color='0.5')

plt.tight_layout();

Preparing for projections

In this notebook, we have trained and tested our model with various combinations of data. Subsequently, the average
performance of the model was evaluated with a range of metrics.

If we want to re-use our model for the future and want to make projections, it is necessary to save the model (that is,
the n fitted classifiers). They can then be loaded and one or more projections can be made with other variable values
than those used for this reference run.

To that end, the classifier is fitted again, but then with all data, i.e. without a split-sample test. That way, the classifier
fit is most robust.

2.4. Workflow 27

copro Documentation, Release 0.1.1

[25]: %%capture

for root, dirs, files in os.walk(os.path.join(out_dir_REF, 'clfs')):
for file in files:

fname = file
print(fname)
copyfile(os.path.join(out_dir_REF, 'clfs', str(fname)),

os.path.join('temp_files', str(fname)))

[]:

2.4.4 Projecting conflict risk

In this notebook, we will show how CoPro uses a number of previously fitted classifiers and projects conflict risk
forward in time. Eventually, these forward predictions based on multiple classifiers can be merged into a robust estimate
of future conflict risk.

Preparations

Start with loading the required packages.

[1]: from copro import utils, pipeline, evaluation, plots, machine_learning

%matplotlib inline

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import geopandas as gpd
import seaborn as sbs
import os, sys
from sklearn import metrics
from shutil import copyfile
import warnings
import glob
warnings.simplefilter("ignore")

For better reproducibility, the version numbers of all key packages are provided.

[2]: utils.show_versions()

Python version: 3.7.8 | packaged by conda-forge | (default, Jul 31 2020, 01:53:57) [MSC␣
→˓v.1916 64 bit (AMD64)]
copro version: 0.0.8
geopandas version: 0.9.0
xarray version: 0.15.1
rasterio version: 1.1.0
pandas version: 1.0.3
numpy version: 1.18.1
scikit-learn version: 0.23.2
matplotlib version: 3.2.1

(continues on next page)

28 Chapter 2. Contents

copro Documentation, Release 0.1.1

(continued from previous page)

seaborn version: 0.11.0
rasterstats version: 0.14.0

To be able to also run this notebooks, some of the previously saved data needs to be loaded from a temporary location.

[3]: conflict_gdf = gpd.read_file(os.path.join('temp_files', 'conflicts.shp'))
selected_polygons_gdf = gpd.read_file(os.path.join('temp_files', 'polygons.shp'))

[4]: global_arr = np.load(os.path.join('temp_files', 'global_df.npy'), allow_pickle=True)
global_df = pd.DataFrame(data=global_arr, columns=['geometry', 'ID'])
global_df.set_index(global_df.ID, inplace=True)
global_df.drop(['ID'] , axis=1, inplace=True)

The configurations-file (cfg-file)

To be able to continue the simulation with the same settings as in the previous notebook, the cfg-file has to be read
again and the model needs to be initialised subsequently. This is not needed if CoPro is run from command line. Please
see the first notebook for additional information.

[5]: settings_file = 'example_settings.cfg'

[6]: main_dict, root_dir = utils.initiate_setup(settings_file, verbose=False)

CoPro version 0.0.8
For information about the model, please visit https://copro.readthedocs.io/
Copyright (2020-2021): Jannis M. Hoch, Sophie de Bruin, Niko Wanders
Contact via: j.m.hoch@uu.nl
The model can be used and shared under the MIT license

INFO: reading model properties from example_settings.cfg
INFO: verbose mode on: False
INFO: saving output to main folder C:\Users\hoch0001\Documents_code\copro\example\./OUT

[7]: config_REF = main_dict['_REF'][0]
out_dir_REF = main_dict['_REF'][1]

In addition to the config-object and output path for the reference period, main_dict also contains the equivalents for
the projection run. In the cfg-file, an extra cfg-file can be provided per projection.

[8]: config_REF.items('PROJ_files')

[8]: [('proj_nr_1', './example_settings_proj.cfg')]

In this example, the files is called example_settings_proj.cfg and the name of the projection is proj_nr_1.

[9]: config_PROJ = main_dict['proj_nr_1'][0]
print('the configuration of the projection run is {}'.format(config_PROJ))
out_dir_PROJ = main_dict['proj_nr_1'][1]
print('the output directory of the projection run is {}'.format(out_dir_PROJ))

2.4. Workflow 29

copro Documentation, Release 0.1.1

the configuration of the projection run is [<configparser.RawConfigParser object at␣
→˓0x0000021E18A03508>]
the output directory of the projection run is C:\Users\hoch0001\Documents_code\copro\
→˓example\./OUT_PROJ\proj_nr_1

In the previous notebooks, conflict at the last year of the reference period as well as classifiers were stored temporarily
to another folder than the output folder. Now let’s copy these files back to the folders where the belong.

[10]: %%capture

for root, dirs, files in os.walk('temp_files'):

conflicts at last time step
files = glob.glob(os.path.abspath('./temp_files/conflicts_in*'))
for file in files:

fname = file.rsplit('\\')[-1]
print(fname)
copyfile(os.path.join('temp_files', fname),

os.path.join(out_dir_REF, 'files', str(fname)))

classifiers
files = glob.glob(os.path.abspath('./temp_files/clf*'))
for file in files:

fname = file.rsplit('\\')[-1]
print(fname)
copyfile(os.path.join('temp_files', fname),

os.path.join(out_dir_REF, 'clfs', str(fname)))

Similarly, we need to load the sample data (X) for the reference run as we need to fit the scaler with this data before we
can make comparable and consistent projections.

[11]: config_REF.set('pre_calc', 'XY', str(os.path.join(out_dir_REF, 'XY.npy')))
X, Y = pipeline.create_XY(config_REF, out_dir_REF, root_dir, selected_polygons_gdf,␣
→˓conflict_gdf)

INFO: loading XY data from file C:\Users\hoch0001\Documents_code\copro\example\./OUT_
→˓REF\XY.npy

Lastly, we need to get the scaler for the samples matrix again. The pre-computed and already fitted classifiers are
directly loaded from file (see above). The clf returned here will not be used.

[12]: scaler, clf = pipeline.prepare_ML(config_REF)

Project!

With this all in place, we can now make projections. Under the hood, various steps are taken for each projectio run
specified:

1. Load the corresponding ConfigParser-object;

2. Determine the projection period defined as the period between last year of reference run and projection year
specified in cfg-file of projection run;

3. Make a separate projection per classifier (the number of classifiers, or model runs, is specified in the cfg-file):

30 Chapter 2. Contents

copro Documentation, Release 0.1.1

1. in the first year of the projection year, use conflict data from last year of reference run, i.e. still observed
conflict data;

2. in all following year, use the conflict data projected for the previous year with this specific classifier;

3. all other variables are read from file for all years.

4. Per year, merge the conflict risk projected by all classifiers and derive a fractional conflict risk per polygon.

For detailed information, please see the documentatoin and code of copro.pipeline.run_prediction(). As this
is one function doing all the work, it is not possible to split up the workflow in more detail here.

[13]: all_y_df = pipeline.run_prediction(scaler.fit(X[: , 2:]), main_dict, root_dir, selected_
→˓polygons_gdf)

INFO: loading config-object for projection run: proj_nr_1
INFO: the projection period is 2013 to 2015
INFO: making projection for year 2013
INFO: making projection for year 2014
INFO: making projection for year 2015

Analysis of projection

All the previously used evaluation metrics are not applicable anymore, as there are no target values anymore. We can
still look what the mean conflict probability is as computed by the model per polygon.

[15]: # link projection outcome to polygons via unique polygon-ID
df_hit, gdf_hit = evaluation.polygon_model_accuracy(all_y_df, global_df, make_proj=True)

and plot
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
gdf_hit.plot(ax=ax, column='probability_of_conflict', legend=True, figsize=(20, 10),␣
→˓cmap='Blues', vmin=0, vmax=1,

legend_kwds={'label': "mean conflict probability", 'orientation': "vertical",
→˓'fraction': 0.045})
selected_polygons_gdf.boundary.plot(ax=ax, color='0.5');

2.4. Workflow 31

copro Documentation, Release 0.1.1

Projection output

The conflict projection per year is also stored in the output folder of the projection run as geoJSON files. These files
can be used to post-process the data with the scripts provided with CoPro or to load them into bespoke scripts and
functions written by the user.

2.5 Output

2.5.1 Output folder structure

All output is stored in the output folder as specified in the configurations-file (cfg-file) under [general].

[general]
output_dir=./path/to/store/output

32 Chapter 2. Contents

copro Documentation, Release 0.1.1

By default, CoPro creates two sub-folders: _REF and _PROJ. In the latter, another sub-folder will be created per pro-
jection defined in the cfg-file. In the example below, this would be the folders /_PROJ/SSP1 and /_PROJ/SSP2.

[PROJ_files]
SSP1=/path/to/ssp1.cfg
SSP2=/path/to/ssp2.cfg

2.5.2 List of output files

Important: Not all model types provide the output mentioned below. If the ‘leave-one-out’ or ‘single variable’ model
are selected, only the metrics are stored to a csv-file.

_REF

In addition to the output files listed below, the cfg-file is automatically copied to the _REF folder.

selected_polygons.shp: Shapefile containing all remaining polygons after selection procedure.

selected_conflicts.shp: Shapefile containing all remaining conflict points after selection procedure,

XY.npy: NumPy-array containing geometry, ID, and scaled data of sample (X) and target data (Y). Can be provided in
cfg-file to safe time in next run; file can be loaded with numpy.load().

raw_output_data.npy: NumPy-array containing each single prediction made in the reference run. Will contain
multiple predictions per polygon. File can be loaded with numpy.load().

evaluation_metrics.csv: Various evaluation metrics determined per repetition of the split-sample tests. File can
e.g. be loaded with pandas.read_csv().

feature_importance.csv: Importance of each model variable in making projections. This is a property of RF
Classifiers and thus only obtainable if RF Classifier is used.

permutation_importance.csv: Mean permutation importance per model variable. Computed with
sklearn.inspection.permutation_importance.

ROC_data_tprs.csv and ROC_data_aucs.csv: False-positive rates respectively Area-under-curve values per repe-
tition of the split-sample test. Files can e.g. be loaded with pandas.read_csv() and can be used to later plot ROC-curve.

output_for_REF.geojson: GeoJSON-file containing resulting conflict risk estimates per polygon based on out-of-
sample projections of _REF run.

Conflict risk per polygon

At the end of all model repetitions, the resulting raw_output_data.npy file contains multiple out-of-sample pre-
dictions per polygon. By aggregating results per polygon, it is possible to assess model output spatially as stored in
output_for_REF.geojson.

The main output metrics are calculated per polygon and saved to output_per_polygon.shp:

1. nr_predictions: the number of predictions made;

2. nr_correct_predictions: the number of correct predictions made;

3. nr_observed_conflicts: the number of observed conflict events;

4. nr_predicted_conflicts: the number of predicted conflicts;

2.5. Output 33

https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html

copro Documentation, Release 0.1.1

5. min_prob_1: minimum probability of conflict in all repetitions;

6. probability_of_conflict (POC): probability of conflict averaged over all repetitions;

7. max_prob_1: maximum probability of conflict in all repetitions;

8. fraction_correct_predictions (FOP): ratio of the number of correct predictions over the total number of predic-
tions made;

9. chance_of_conflict: ratio of the number of conflict predictions over the total number of predictions made.

_PROJ

Per projection, CoPro creates one output file per projection year.

output_in_<YEAR>: GeoJSON-file containing model output per polygon averaged over all classifier instances per
YEAR of the projection. The number of instances is set with n_runs in [machine_learning] section.

Conflict risk per polygon

During the projection run, each classifier instances produces its own output per YEAR. CoPro merges these outputs
into one output_in_<YEAR>.geojson file.

As there are no observations available for the projection period, the output metrics differ from the reference run:

1. nr_predictions: the number of predictions made, ie. number of classifier instances;

2. nr_predicted_conflicts: the number of predicted conflicts.

3. min_prob_1: minimum probability of conflict in all outputs of classifier instances.

4. probability_of_conflict (POC): probability of conflict averaged over all outputs of classifier instances.

5. max_prob_1: maximum probability of conflict in all outputs of classifier instances;

6. chance_of_conflict: ratio of the number of conflict predictions over the total number of predictions made.

2.6 Postprocessing

There are several command line scripts available for post-processing. In addition to quick plots to evaluate model
output, they also produce files for use in bespoke plotting and analysis scripts.

The scripts are located under /copro/scripts/postprocessing.

The here shown help print-outs can always be accessed with

python <SCRIPT_FILE_NAME> --help

34 Chapter 2. Contents

copro Documentation, Release 0.1.1

2.6.1 plot_value_over_time.py

Usage: python plot_value_over_time.py [OPTIONS] INPUT_DIR OUTPUT_DIR

Quick and dirty function to plot the develoment of a column in the
outputted geoJSON-files over time. The script uses all geoJSON-files
located in input-dir and retrieves values from them. Possible to plot
obtain development for multiple polygons (indicated via their ID) or
entire study area. If the latter, then different statistics can be chosen
(mean, max, min, std).

Args:
input-dir (str): path to input directory with geoJSON-files located per␣

→˓projection year.
output-dir (str): path to directory where output will be stored.

Output:
a csv-file containing values per time step.
a png-file showing development over time.

Options:
-id, --polygon-id TEXT
-s, --statistics TEXT which statistical method to use (mean, max, min,

std). note: has only effect if with "-id all"!

-c, --column TEXT column name
-t, --title TEXT title for plot and file_object name
--verbose / --no-verbose verbose on/off

2.6.2 avg_over_time.py

Usage: python avg_over_time.py [OPTIONS] INPUT_DIR OUTPUT_DIR SELECTED_POLYGONS

Post-processing script to calculate average model output over a user-
specifeid period or all output geoJSON-files stored in input-dir.
Computed average values can be outputted as geoJSON-file or png-file or both.

Args:
input_dir: path to input directory with geoJSON-files located per projection␣

→˓year.
output_dir (str): path to directory where output will be stored.
selected_polygons (str): path to a shp-file with all polygons used in a CoPro␣

→˓run.

Output:
geoJSON-file with average column value per polygon (if geojson is set).
png-file with plot of average column value per polygon (if png is set)

Options:
-t0, --start-year INTEGER
-t1, --end-year INTEGER

(continues on next page)

2.6. Postprocessing 35

copro Documentation, Release 0.1.1

(continued from previous page)

-c, --column TEXT column name
--geojson / --no-geojson save output to geojson or not
--png / --no-png save output to png or not
--verbose / --no-verbose verbose on/off

2.6.3 plot_polygon_vals.py

Usage: python plot_polygon_vals.py [OPTIONS] FILE_OBJECT OUTPUT_DIR

Quick and dirty function to plot the column values of a geojson file with
minimum user input, and save plot. Mainly used for quick inspection of
model output in specific years.

Args:
file-object (str): path to geoJSON-file whose values are to be plotted.
output-dir (str): path to directory where plot will be saved.

Output:
a png-file of values per polygon.

Options:
-c, --column TEXT column name
-t, --title TEXT title for plot and file_object name
-v0, --minimum-value FLOAT
-v1, --maximum-value FLOAT
-cmap, --color-map TEXT

2.6.4 geojson2gif.py

Usage: python geojson2gif.py [OPTIONS] INPUT_DIR OUTPUT_DIR

Function to convert column values of all geoJSON-files in a directory into
one GIF-file. The function provides several options to modify the design
of the GIF-file. The GIF-file is based on png-files of column value per
geoJSON-file. It is possible to keep these png-file as simple plots of
values per time step.

Args:
input-dir (str): path to directory where geoJSON-files are stored.
output_dir (str): path to directory where GIF-file will be stored.

Output:
GIF-file with animated column values per input geoJSON-file.

Options:
-c, --column TEXT column name
-cmap, --color-map TEXT
-v0, --minimum-value FLOAT

(continues on next page)

36 Chapter 2. Contents

copro Documentation, Release 0.1.1

(continued from previous page)

-v1, --maximum-value FLOAT
--delete / --no-delete whether or not to delete png-files

2.7 API docs

This section contains the Documentation of the Application Programming Interface (API) of ‘copro’.

2.7.1 The model pipeline

pipeline.create_XY Top-level function to create the X-array and Y-array.
pipeline.prepare_ML Top-level function to instantiate the scaler and model as

specified in model configurations.
pipeline.run_reference Top-level function to run one of the four supported mod-

els.
pipeline.run_prediction Top-level function to execute the projections.

copro.pipeline.create_XY

copro.pipeline.create_XY(config, out_dir, root_dir, polygon_gdf, conflict_gdf)
Top-level function to create the X-array and Y-array. If the XY-data was pre-computed and specified in cfg-file,
the data is loaded. If not, variable values and conflict data are read from file and stored in array. The resulting
array is by default saved as npy-format to file.

Parameters

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• out_dir (str) – path to output folder.

• root_dir (str) – path to location of cfg-file.

• polygon_gdf (geo-dataframe) – geo-dataframe containing the selected polygons.

• conflict_gdf (geo-dataframe) – geo-dataframe containing the selected conflicts.

Returns X-array containing variable values. array: Y-array containing conflict data.

Return type array

copro.pipeline.prepare_ML

copro.pipeline.prepare_ML(config)
Top-level function to instantiate the scaler and model as specified in model configurations.

Parameters config (ConfigParser-object) – object containing the parsed configuration-
settings of the model.

Returns the specified scaler instance. classifier: the specified model instance.

Return type scaler

2.7. API docs 37

copro Documentation, Release 0.1.1

copro.pipeline.run_reference

copro.pipeline.run_reference(X, Y, config, scaler, clf, out_dir, run_nr)
Top-level function to run one of the four supported models.

Parameters

• X (array) – X-array containing variable values.

• Y (array) – Y-array containing conflict data.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• scaler (scaler) – the specified scaler instance.

• clf (classifier) – the specified model instance.

• out_dir (str) – path to output folder.

Raises ValueError – raised if unsupported model is specified.

Returns containing the test-data X-array values. datatrame: containing model output on polygon-
basis. dict: dictionary containing evaluation metrics per simulation.

Return type dataframe

copro.pipeline.run_prediction

copro.pipeline.run_prediction(scaler, main_dict, root_dir, selected_polygons_gdf)
Top-level function to execute the projections. Per specified projection, conflict is projected forwards in time
per time step until the projection year is reached. Pear time step, the sample data and conflict data are read
individually since different conflict projections are made per classifier used. At the end of each time step, the
projections of all classifiers are combined and output metrics determined.

Parameters

• scaler (scaler) – the specified scaler instance.

• main_dict (dict) – dictionary containing config-objects and output directories for refer-
ence run and all projection runs.

• root_dir (str) – path to location of cfg-file.

• selected_polygons_gdf (geo-dataframe) –

Raises ValueError – raised if another model type than the one using all data is specified in cfg-file.

Returns containing model output on polygon-basis.

Return type dataframe

38 Chapter 2. Contents

copro Documentation, Release 0.1.1

2.7.2 The various models

models.all_data Main model workflow when all XY-data is used.
models.leave_one_out Model workflow when each variable is left out from

analysis once.
models.single_variables Model workflow when the model is based on only one

single variable.
models.dubbelsteen Model workflow when the relation between variables

and conflict is based on randomness.
models.predictive Predictive model to use the already fitted classifier to

make annual projections for the projection period.

copro.models.all_data

copro.models.all_data(X, Y, config, scaler, clf, out_dir, run_nr)
Main model workflow when all XY-data is used. The model workflow is executed for each classifier.

Parameters

• X (array) – array containing the variable values plus IDs and geometry information.

• Y (array) – array containing merely the binary conflict classifier data.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• scaler (scaler) – the specified scaling method instance.

• clf (classifier) – the specified model instance.

• out_dir (str) – path to output folder.

Returns containing the test-data X-array values. datatrame: containing model output on polygon-
basis. dict: dictionary containing evaluation metrics per simulation.

Return type dataframe

copro.models.leave_one_out

copro.models.leave_one_out(X, Y, config, scaler, clf, out_dir)
Model workflow when each variable is left out from analysis once. Output is limited to the metric scores. Output
is stored to sub-folders of the output directory, with each sub-folder containing output for a n-1 variable combi-
nation. After computing metric scores per prediction (i.e. n-1 variables combinations), model exit is forced. Not
tested yet for more than one simulation!

Parameters

• X (array) – array containing the variable values plus unique identifer and geometry infor-
mation.

• Y (array) – array containing merely the binary conflict classifier data.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• scaler (scaler) – the specified scaling method instance.

• clf (classifier) – the specified model instance.

2.7. API docs 39

copro Documentation, Release 0.1.1

• out_dir (str) – path to output folder.

Raises DeprecationWarning – this function will most likely be deprecated due to lack of added
value and applicability.

copro.models.single_variables

copro.models.single_variables(X, Y, config, scaler, clf, out_dir)
Model workflow when the model is based on only one single variable. Output is limited to the metric scores.
Output is stored to sub-folders of the output directory, with each sub-folder containing output for a 1 variable
combination. After computing metric scores per prediction (i.e. per variable), model exit is forced. Not tested
yet for more than one simulation!

Parameters

• X (array) – array containing the variable values plus unique identifer and geometry infor-
mation.

• Y (array) – array containing merely the binary conflict classifier data.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• scaler (scaler) – the specified scaling method instance.

• clf (classifier) – the specified model instance.

• out_dir (str) – path to output folder.

Raises DeprecationWarning – this function will most likely be deprecated due to lack of added
value and applicability.

copro.models.dubbelsteen

copro.models.dubbelsteen(X, Y, config, scaler, clf, out_dir)
Model workflow when the relation between variables and conflict is based on randomness. Thereby, the fraction
of actual conflict is equal to observations, but the location in array is randomized by shuffling. The model
workflow is executed for each model simulation.

Parameters

• X (array) – array containing the variable values plus unique identifer and geometry infor-
mation.

• Y (array) – array containing merely the binary conflict classifier data.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• scaler (scaler) – the specified scaling method instance.

• clf (classifier) – the specified model instance.

• out_dir (str) – path to output folder.

Returns containing the test-data X-array values. datatrame: containing model output on polygon-
basis. dict: dictionary containing evaluation metrics per simulation.

Return type dataframe

40 Chapter 2. Contents

copro Documentation, Release 0.1.1

copro.models.predictive

copro.models.predictive(X, clf, scaler, config)
Predictive model to use the already fitted classifier to make annual projections for the projection period. As other
models, it reads data which are then scaled and used in conjuction with the classifier to project conflict risk.

Parameters

• X (array) – array containing the variable values plus unique identifer and geometry infor-
mation.

• clf (classifier) – the fitted specified classifier instance.

• scaler (scaler) – the fitted specified scaling method instance.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model for a projection run.

Returns containing model output on polygon-basis.

Return type datatrame

Note: The ‘leave_one_out’, ‘single_variables’, and ‘dubbelsteen’ models are only tested in beta-state. They will most
likely be deprecated in near future.

2.7.3 Selecting polygons and conflicts

selection.select Main function performing the selection procedure.
selection.filter_conflict_properties Filters conflict database according to certain conflict

properties such as number of casualties, type of violence
or country.

selection.select_period Reducing the geo-dataframe to those entries falling into
a specified time period.

selection.clip_to_extent As the original conflict data has global extent, this func-
tion clips the database to those entries which have oc-
cured on a specified continent.

selection.climate_zoning This function allows for selecting only those conflicts
and polygons falling in specified climate zones.

copro.selection.select

copro.selection.select(config, out_dir, root_dir)
Main function performing the selection procedure. Also stores the selected conflicts and polygons to output
directory.

Parameters

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• out_dir (str) – path to output folder.

• root_dir (str) – path to location of cfg-file.

Returns remaining conflict data after selection process. geo-dataframe: all polygons of the study

2.7. API docs 41

copro Documentation, Release 0.1.1

area. geo-dataframe: remaining polygons after selection process. dataframe: global look-up
dataframe linking polygon ID with geometry information.

Return type geo-dataframe

copro.selection.filter_conflict_properties

copro.selection.filter_conflict_properties(gdf, config)
Filters conflict database according to certain conflict properties such as number of casualties, type of violence or
country.

Parameters

• gdf (geo-dataframe) – geo-dataframe containing entries with conflicts.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

Returns geo-dataframe containing filtered entries.

Return type geo-dataframe

copro.selection.select_period

copro.selection.select_period(gdf, config)
Reducing the geo-dataframe to those entries falling into a specified time period.

Parameters

• gdf (geo-dataframe) – geo-dataframe containing entries with conflicts.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

Returns geo-dataframe containing filtered entries.

Return type geo-dataframe

copro.selection.clip_to_extent

copro.selection.clip_to_extent(gdf, config, root_dir)
As the original conflict data has global extent, this function clips the database to those entries which have occured
on a specified continent.

Parameters

• gdf (geo-dataframe) – geo-dataframe containing entries with conflicts.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• root_dir (str) – path to location of cfg-file.

Returns geo-dataframe containing filtered entries. geo-dataframe: geo-dataframe containing coun-
try polygons of selected continent.

Return type geo-dataframe

42 Chapter 2. Contents

copro Documentation, Release 0.1.1

copro.selection.climate_zoning

copro.selection.climate_zoning(gdf, extent_gdf, config, root_dir)
This function allows for selecting only those conflicts and polygons falling in specified climate zones. Also, a
global dataframe is returned containing the IDs and geometry of all polygons after selection procedure. This can
be used to add geometry information to model output based on common ID.

Parameters

• gdf (geo-dataframe) – geo-dataframe containing conflict data.

• extent_gdf (geo-dataframe) – all polygons of study area.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• root_dir (str) – path to location of cfg-file.

Returns conflict data clipped to climate zones. geo-dataframe: polygons of study area clipped to
climate zones.

Return type geo-dataframe

2.7.4 Machine learning

machine_learning.define_scaling Defines scaling method based on model configurations.
machine_learning.define_model Defines model based on model configurations.
machine_learning.split_scale_train_test_splitSplits and transforms the X-array (or sample data) and

Y-array (or target data) in test-data and training-data.
machine_learning.fit_predict Fits classifier based on training-data and makes predic-

tions.
machine_learning.pickle_clf (Re)fits a classifier with all available data and pickles it.
machine_learning.load_clfs Loads the paths to all previously fitted classifiers to a list.

copro.machine_learning.define_scaling

copro.machine_learning.define_scaling(config)
Defines scaling method based on model configurations.

Parameters config (ConfigParser-object) – object containing the parsed configuration-
settings of the model.

Raises ValueError – raised if a non-supported scaling method is specified.

Returns the specified scaling method instance.

Return type scaler

2.7. API docs 43

copro Documentation, Release 0.1.1

copro.machine_learning.define_model

copro.machine_learning.define_model(config)
Defines model based on model configurations. Model parameter were optimized beforehand using Grid-
SearchCV.

Parameters config (ConfigParser-object) – object containing the parsed configuration-
settings of the model.

Raises ValueError – raised if a non-supported model is specified.

Returns the specified model instance.

Return type classifier

copro.machine_learning.split_scale_train_test_split

copro.machine_learning.split_scale_train_test_split(X, Y, config, scaler)
Splits and transforms the X-array (or sample data) and Y-array (or target data) in test-data and training-data. The
fraction of data used to split the data is specified in the configuration file. Additionally, the unique identifier and
geometry of each data point in both test-data and training-data is retrieved in separate arrays.

Parameters

• X (array) – array containing the variable values plus unique identifer and geometry infor-
mation.

• Y (array) – array containing merely the binary conflict classifier data.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• scaler (scaler) – the specified scaling method instance.

Returns arrays containing training-set and test-set for X-data and Y-data as well as IDs and geometry.

Return type arrays

copro.machine_learning.fit_predict

copro.machine_learning.fit_predict(X_train, y_train, X_test, clf, config, out_dir, run_nr)
Fits classifier based on training-data and makes predictions. The fitted classifier is dumped to file with pickle to
be used again during projections. Makes prediction with test-data including probabilities of those predictions.

Parameters

• X_train (array) – training-data of variable values.

• y_train (array) – training-data of conflict data.

• X_test (array) – test-data of variable values.

• clf (classifier) – the specified model instance.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• out_dir (path) – path to output folder.

• run_nr (int) – number of fit/predict repetition and created classifier.

Returns arrays including the predictions made and their probabilities

44 Chapter 2. Contents

copro Documentation, Release 0.1.1

Return type arrays

copro.machine_learning.pickle_clf

copro.machine_learning.pickle_clf(scaler, clf, config, root_dir)
(Re)fits a classifier with all available data and pickles it.

Parameters

• scaler (scaler) – the specified scaling method instance.

• clf (classifier) – the specified model instance.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• root_dir (str) – path to location of cfg-file.

Returns classifier fitted with all available data.

Return type classifier

copro.machine_learning.load_clfs

copro.machine_learning.load_clfs(config, out_dir)
Loads the paths to all previously fitted classifiers to a list. Classifiers were saved to file in fit_predict(). With this
list, the classifiers can be loaded again during projections.

Parameters

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• out_dir (path) – path to output folder.

Returns list with file names of classifiers.

Return type list

2.7.5 Variable values

variables.nc_with_float_timestamp This function extracts a value from a netCDF-file (spec-
ified in the cfg-file) for each polygon specified in ex-
tent_gdf for a given year.

variables.nc_with_continous_datetime_timestampThis function extracts a value from a netCDF-file (spec-
ified in the cfg-file) for each polygon specified in ex-
tent_gdf for a given year.

2.7. API docs 45

copro Documentation, Release 0.1.1

copro.variables.nc_with_float_timestamp

copro.variables.nc_with_float_timestamp(extent_gdf, config, root_dir, var_name, sim_year)
This function extracts a value from a netCDF-file (specified in the cfg-file) for each polygon specified in ex-
tent_gdf for a given year. In the cfg-file, it must also be specified whether the value is log-transformed or not,
and which statistical method is applied.

NOTE: The key in the cfg-file must be identical to variable name in netCDF-file.

NOTE: This function is specifically written for netCDF-files where the time variable contains integer (year-
)values, e.g. 1995, 1996, . . .

NOTE: Works only with nc-files with annual data.

Parameters

• extent_gdf (geodataframe) – geo-dataframe containing one or more polygons with ge-
ometry information for which values are extracted.

• config (config) – parsed configuration settings of run.

• root_dir (str) – path to location of cfg-file.

• var_name (str) – name of variable in nc-file, must also be the same under which path to
nc-file is specified in cfg-file.

• sim_year (int) – year for which data is extracted.

Raises

• ValueError – raised if not everything is specified in cfg-file.

• ValueError – raised if the extracted variable at a time step does not contain data.

Returns list containing statistical value per polygon, i.e. with same length as extent_gdf.

Return type list

copro.variables.nc_with_continous_datetime_timestamp

copro.variables.nc_with_continous_datetime_timestamp(extent_gdf, config, root_dir, var_name,
sim_year)

This function extracts a value from a netCDF-file (specified in the cfg-file) for each polygon specified in ex-
tent_gdf for a given year. In the cfg-file, it must also be specified whether the value is log-transformed or not,
and which statistical method is applied.

NOTE: The key in the cfg-file must be identical to variable name in netCDF-file.

NOTE: Works only with nc-files with annual data.

Parameters

• extent_gdf (geodataframe) – geo-dataframe containing one or more polygons with ge-
ometry information for which values are extracted

• config (config) – parsed configuration settings of run.

• root_dir (str) – path to location of cfg-file.

• var_name (str) – name of variable in nc-file, must also be the same under which path to
nc-file is specified in cfg-file.

• sim_year (int) – year for which data is extracted.

Raises

46 Chapter 2. Contents

copro Documentation, Release 0.1.1

• ValueError – raised if not everything is specified in cfg-file.

• ValueError – raised if specfied year cannot be found in years in nc-file.

• ValueError – raised if the extracted variable at a time step does not contain data.

Returns list containing statistical value per polygon, i.e. with same length as extent_gdf.

Return type list

Warning: Reading files with a float timestamp will most likely be deprecated in near future.

2.7.6 XY-Data

data.initiate_XY_data Initiates an empty dictionary to contain the XY-data for
each polygon, ie.

data.initiate_X_data Initiates an empty dictionary to contain the X-data for
each polygon, ie.

data.fill_XY Fills the (XY-)dictionary with data for each variable and
conflict for each polygon for each simulation year.

data.fill_X_sample Fills the X-dictionary with the data sample data besides
any conflict-related data for each polygon and each year.

data.fill_X_conflict Fills the X-dictionary with the conflict data for each
polygon and each year.

data.split_XY_data Separates the XY-array into array containing informa-
tion about variable values (X-array or sample data) and
conflict data (Y-array or target data).

data.neighboring_polys For each polygon, determines its neighboring polygons.
data.find_neighbors Filters all polygons which are actually neighbors to given

polygon.

copro.data.initiate_XY_data

copro.data.initiate_XY_data(config)
Initiates an empty dictionary to contain the XY-data for each polygon, ie. both sample data and target data. This is
needed for the reference run. By default, the first column is for the polygon ID, the second for polygon geometry.
The antepenultimate column is for boolean information about conflict at t-1 while the penultimate column is for
boolean information about conflict at t-1 in neighboring polygons. The last column is for binary conflict data at
t (i.e. the target data).

Every column in between corresponds to the variables provided in the cfg-file.

Parameters config (ConfigParser-object) – object containing the parsed configuration-
settings of the model.

Returns emtpy dictionary to be filled, containing keys for each variable (X), binary conflict data (Y)
plus meta-data.

Return type dict

2.7. API docs 47

copro Documentation, Release 0.1.1

copro.data.initiate_X_data

copro.data.initiate_X_data(config)
Initiates an empty dictionary to contain the X-data for each polygon, ie. only sample data. This is needed for each
time step of each projection run. By default, the first column is for the polygon ID and the second for polygon
geometry. The penultimate column is for boolean information about conflict at t-1 while the last column is for
boolean information about conflict at t-1 in neighboring polygons. All remaining columns correspond to the
variables provided in the cfg-file.

Parameters config (ConfigParser-object) – object containing the parsed configuration-
settings of the model.

Returns emtpy dictionary to be filled, containing keys for each variable (X) plus meta-data.

Return type dict

copro.data.fill_XY

copro.data.fill_XY(XY, config, root_dir, conflict_data, polygon_gdf, out_dir)
Fills the (XY-)dictionary with data for each variable and conflict for each polygon for each simulation year. The
number of rows should therefore equal to number simulation years times number of polygons. At end of last
simulation year, the dictionary is converted to a numpy-array.

Parameters

• XY (dict) – initiated, i.e. empty, XY-dictionary

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• root_dir (str) – path to location of cfg-file.

• conflict_data (geo-dataframe) – geo-dataframe containing the selected conflicts.

• polygon_gdf (geo-dataframe) – geo-dataframe containing the selected polygons.

• out_dir (path) – path to output folder.

Raises Warning – raised if the datetime-format of the netCDF-file does not match conventions and/or
supported formats.

Returns filled array containing the variable values (X) and binary conflict data (Y) plus meta-data.

Return type array

copro.data.fill_X_sample

copro.data.fill_X_sample(X, config, root_dir, polygon_gdf, proj_year)
Fills the X-dictionary with the data sample data besides any conflict-related data for each polygon and each year.
Used during the projection runs as the sample and conflict data need to be treated separately there.

Parameters

• X (dict) – dictionary containing keys to be sampled.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• root_dir (str) – path to location of cfg-file of reference run.

• polygon_gdf (geo-dataframe) – geo-dataframe containing the selected polygons.

48 Chapter 2. Contents

copro Documentation, Release 0.1.1

• proj_year (int) – year for which projection is made.

Raises Warning – raised if the datetime-format of the netCDF-file does not match conventions and/or
supported formats.

Returns dictionary containing sample values.

Return type dict

copro.data.fill_X_conflict

copro.data.fill_X_conflict(X, config, conflict_data, polygon_gdf)
Fills the X-dictionary with the conflict data for each polygon and each year. Used during the projection runs as
the sample and conflict data need to be treated separately there.

Parameters

• X (dict) – dictionary containing keys to be sampled.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• conflict_data (dataframe) – dataframe containing all polygons with conflict.

• polygon_gdf (geo-dataframe) – geo-dataframe containing the selected polygons.

Returns dictionary containing sample and conflict values.

Return type dict

copro.data.split_XY_data

copro.data.split_XY_data(XY, config)
Separates the XY-array into array containing information about variable values (X-array or sample data) and
conflict data (Y-array or target data). Thereby, the X-array also contains the information about unique identifier
and polygon geometry.

Parameters

• XY (array) – array containing variable values and conflict data.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

Returns two separate arrays, the X-array and Y-array.

Return type arrays

copro.data.neighboring_polys

copro.data.neighboring_polys(config, extent_gdf, identifier='watprovID')
For each polygon, determines its neighboring polygons. As result, a (n x n) look-up dataframe is obtained con-
taining, where n is number of polygons in extent_gdf.

Parameters

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• extent_gdf (geo-dataframe) – geo-dataframe containing the selected polygons.

2.7. API docs 49

copro Documentation, Release 0.1.1

• identifier (str, optional) – column name in extent_gdf to be used to identify neigh-
bors. Defaults to ‘watprovID’.

Returns look-up dataframe containing True/False statement per polygon for all other polygons.

Return type dataframe

copro.data.find_neighbors

copro.data.find_neighbors(ID, neighboring_matrix)
Filters all polygons which are actually neighbors to given polygon.

Parameters

• ID (int) – ID of specific polygon under consideration.

• neighboring_matrix (dataframe) – output from neighboring_polys().

Returns dataframe containig IDs of all polygons that are actual neighbors.

Return type dataframe

2.7.7 Work with conflict data

conflict.conflict_in_year_bool Creates a list for each timestep with boolean information
whether a conflict took place in a polygon or not.

conflict.conflict_in_previous_year Creates a list for each timestep with boolean information
whether a conflict took place in a polygon at the previous
timestep or not.

conflict.read_projected_conflict Creates a list for each timestep with boolean information
whether a conflict took place in a polygon or not.

conflict.calc_conflicts_nb Determines whether in the neighbouring polygons of a
polygon i_poly conflict took place.

conflict.get_poly_ID Extracts and returns a list with unique identifiers for each
polygon used in the model.

conflict.get_poly_geometry Extracts geometry information for each polygon from
geodataframe and saves to list.

conflict.split_conflict_geom_data Separates the unique identifier, geometry information,
and data from the variable-containing X-array.

conflict.get_pred_conflict_geometry Stacks together the arrays with unique identifier, geom-
etry, test data, and predicted data into a dataframe.

copro.conflict.conflict_in_year_bool

copro.conflict.conflict_in_year_bool(config, conflict_gdf, extent_gdf, sim_year, out_dir)
Creates a list for each timestep with boolean information whether a conflict took place in a polygon or not.

Parameters

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• conflict_gdf (geodataframe) – geo-dataframe containing georeferenced information of
conflict (tested with PRIO/UCDP data).

50 Chapter 2. Contents

copro Documentation, Release 0.1.1

• extent_gdf (geodataframe) – geo-dataframe containing one or more polygons with ge-
ometry information for which values are extracted.

• sim_year (int) – year for which data is extracted.

• out_dir (str) – path to output folder. If ‘None’, no output is stored.

Raises AssertionError – raised if the length of output list does not match length of input geo-
dataframe.

Returns list containing 0/1 per polygon depending on conflict occurence.

Return type list

copro.conflict.conflict_in_previous_year

copro.conflict.conflict_in_previous_year(config, conflict_gdf, extent_gdf, sim_year,
check_neighbors=False, neighboring_matrix=None)

Creates a list for each timestep with boolean information whether a conflict took place in a polygon at the previous
timestep or not. If the current time step is the first (t=0), then this year is skipped and the model continues at the
next time step.

Parameters

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• conflict_gdf (geodataframe) – geo-dataframe containing georeferenced information of
conflict (tested with PRIO/UCDP data).

• extent_gdf (geodataframe) – geo-dataframe containing one or more polygons with ge-
ometry information for which values are extracted.

• sim_year (int) – year for which data is extracted.

• check_neighbors (bool) – whether to check conflict events in neighboring polygons. De-
faults to False.

• neighboring_matrix (dataframe) – lookup-dataframe indicating which polygons are
mutual neighbors. Defaults to None.

Raises

• ValueError – raised if check_neighbors is True, but no matrix is provided.

• AssertionError – raised if the length of output list does not match length of input geo-
dataframe.

Returns list containing 0/1 per polygon depending on conflict occurence if checkinf for conflict at t-1,
and containing log-transformed number of conflict events in neighboring polygons if specified.

Return type list

2.7. API docs 51

copro Documentation, Release 0.1.1

copro.conflict.read_projected_conflict

copro.conflict.read_projected_conflict(extent_gdf, bool_conflict, check_neighbors=False,
neighboring_matrix=None)

Creates a list for each timestep with boolean information whether a conflict took place in a polygon or not.
Input conflict data (bool_conflict) must contain an index with IDs corresponding with the ‘watprovID’ values of
extent_gdf. Optionally, the algorithm can be extended to the neighboring polygons.

Parameters

• extent_gdf (geodataframe) – geo-dataframe containing one or more polygons with ge-
ometry information for which values are extracted.

• bool_conflict (dataframe) – dataframe with boolean values (1) for each polygon with
conflict.

• check_neighbors (bool, optional) – whether or not to check for conflict in neighboring
polygons. Defaults to False.

• neighboring_matrix (dataframe, optional) – look-up dataframe listing all neighbor-
ing polygons. Defaults to None.

Returns containing 1 and 0 values for each polygon with conflict respectively without conflict. If
check_neighbors=True, then 1 if neighboring polygon contains conflict and 0 is not.

Return type list

copro.conflict.calc_conflicts_nb

copro.conflict.calc_conflicts_nb(i_poly, neighboring_matrix, conflicts_per_poly)
Determines whether in the neighbouring polygons of a polygon i_poly conflict took place. If so, a value 1 is
returned, otherwise 0.

Parameters

• i_poly (int) – ID number of polygon under consideration.

• neighboring_matrix (dataframe) – look-up dataframe listing all neighboring polygons.

• conflicts_per_poly (dataframe) – dataframe with conflict informatoin per polygon.

Returns 1 is conflict took place in neighboring polygon, 0 if not.

Return type int

copro.conflict.get_poly_ID

copro.conflict.get_poly_ID(extent_gdf)
Extracts and returns a list with unique identifiers for each polygon used in the model. The identifiers are currently
limited to ‘watprovID’.

Parameters extent_gdf (geo-dataframe) – geo-dataframe containing one or more polygons.

Raises AssertionError – error raised if length of output list does not match length of input geo-
dataframe.

Returns list containing a unique identifier extracted from geo-dataframe for each polygon used in the
model.

Return type list

52 Chapter 2. Contents

copro Documentation, Release 0.1.1

copro.conflict.get_poly_geometry

copro.conflict.get_poly_geometry(extent_gdf, config)
Extracts geometry information for each polygon from geodataframe and saves to list. The geometry column in
geodataframe must be named ‘geometry’.

Parameters

• extent_gdf (geo-dataframe) – geo-dataframe containing one or more polygons with ge-
ometry information.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

Raises AssertionError – error raised if length of output list does not match length of input geo-
dataframe.

Returns list containing the geometry information extracted from geo-dataframe for each polygon
used in the model.

Return type list

copro.conflict.split_conflict_geom_data

copro.conflict.split_conflict_geom_data(X)
Separates the unique identifier, geometry information, and data from the variable-containing X-array.

Parameters X (array) – variable-containing X-array.

Returns seperate arrays with ID, geometry, and actual data

Return type arrays

copro.conflict.get_pred_conflict_geometry

copro.conflict.get_pred_conflict_geometry(X_test_ID, X_test_geom, y_test, y_pred, y_prob_0, y_prob_1)
Stacks together the arrays with unique identifier, geometry, test data, and predicted data into a dataframe. Con-
tains therefore only the data points used in the test-sample, not in the training-sample. Additionally computes
whether a correct prediction was made.

Parameters

• X_test_ID (list) – list containing the unique identifier per data point.

• X_test_geom (list) – list containing the geometry per data point.

• y_test (list) – list containing test-data.

• y_pred (list) – list containing predictions.

Returns dataframe with each input list as column plus computed ‘correct_pred’.

Return type dataframe

2.7. API docs 53

copro Documentation, Release 0.1.1

2.7.8 Model evaluation

evaluation.init_out_dict Initiates the main model evaluatoin dictionary for a
range of model metric scores.

evaluation.fill_out_dict Appends the computed metric score per run to the main
output dictionary.

evaluation.init_out_df Initiates and empty main output dataframe.
evaluation.fill_out_df Appends output dataframe of each simulation to main

output dataframe.
evaluation.evaluate_prediction Computes a range of model evaluation metrics and ap-

pends the resulting scores to a dictionary.
evaluation.polygon_model_accuracy Determines a range of model accuracy values for each

polygon.
evaluation.init_out_ROC_curve Initiates empty lists for range of variables needed to plot

ROC-curve per simulation.
evaluation.save_out_ROC_curve Saves data needed to plot mean ROC and standard devi-

ation to csv-files.
evaluation.calc_correlation_matrix Computes the correlation matrix for a dataframe.
evaluation.get_feature_importance Determines relative importance of each feature (i.e.
evaluation.get_permutation_importance Returns a dataframe with the mean permutation impor-

tance of the features used to train a RF tree model.

copro.evaluation.init_out_dict

copro.evaluation.init_out_dict()
Initiates the main model evaluatoin dictionary for a range of model metric scores. The scores should match the
scores used in the dictioary created in ‘evaluation.evaluate_prediction()’.

Returns empty dictionary with metrics as keys.

Return type dict

copro.evaluation.fill_out_dict

copro.evaluation.fill_out_dict(out_dict, eval_dict)
Appends the computed metric score per run to the main output dictionary. All metrics are initialized in
init_out_dict().

Parameters

• out_dict (dict) – main output dictionary.

• eval_dict (dict) – dictionary containing scores per simulation.

Returns dictionary with collected scores for each simulation

Return type dict

54 Chapter 2. Contents

copro Documentation, Release 0.1.1

copro.evaluation.init_out_df

copro.evaluation.init_out_df()
Initiates and empty main output dataframe.

Returns empty dataframe.

Return type dataframe

copro.evaluation.fill_out_df

copro.evaluation.fill_out_df(out_df, y_df)
Appends output dataframe of each simulation to main output dataframe.

Parameters

• out_df (dataframe) – main output dataframe.

• y_df (dataframe) – output dataframe of each simulation.

Returns main output dataframe containing results of all simulations.

Return type dataframe

copro.evaluation.evaluate_prediction

copro.evaluation.evaluate_prediction(y_test, y_pred, y_prob, X_test, clf, config)
Computes a range of model evaluation metrics and appends the resulting scores to a dictionary. This is done for
each model execution separately. Output will be stored to stderr if possible.

Parameters

• y_test (list) – list containing test-sample conflict data.

• y_pred (list) – list containing predictions.

• y_prob (array) – array resulting probabilties of predictions.

• X_test (array) – array containing test-sample variable values.

• clf (classifier) – sklearn-classifier used in the simulation.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

Returns dictionary with scores for each simulation

Return type dict

copro.evaluation.polygon_model_accuracy

copro.evaluation.polygon_model_accuracy(df, global_df, make_proj=False)
Determines a range of model accuracy values for each polygon. Reduces dataframe with results from each
simulation to values per unique polygon identifier. Determines the total number of predictions made per polygon
as well as fraction of correct predictions made for overall and conflict-only data.

Parameters

• df (dataframe) – output dataframe containing results of all simulations.

2.7. API docs 55

copro Documentation, Release 0.1.1

• global_df (dataframe) – global look-up dataframe to associate unique identifier with ge-
ometry.

• make_proj (bool, optional) – whether or not this function is used to make a projection.
If True, a couple of calculations are skipped as no observed data is available for projections.
Defaults to ‘False’.

Returns dataframe and geo-dataframe with data per polygon.

Return type (geo-)dataframe

copro.evaluation.init_out_ROC_curve

copro.evaluation.init_out_ROC_curve()
Initiates empty lists for range of variables needed to plot ROC-curve per simulation.

Returns empty lists for variables.

Return type lists

copro.evaluation.save_out_ROC_curve

copro.evaluation.save_out_ROC_curve(tprs, aucs, out_dir)
Saves data needed to plot mean ROC and standard deviation to csv-files. They can be loaded again with pandas
in a post-processing step.

Parameters

• tprs (list) – list with false positive rates.

• aucs (list) – list with area-under-curve values.

• out_dir (str) – path to output folder. If ‘None’, no output is stored.

copro.evaluation.calc_correlation_matrix

copro.evaluation.calc_correlation_matrix(df, out_dir=None)
Computes the correlation matrix for a dataframe. The dataframe should only contain numeric values.

Parameters

• df (dataframe) – dataframe with analysed output per polygon.

• out_dir (str) – path to output folder. If ‘None’, no output is stored. Default to ‘None’.

Returns dataframe containig correlation matrix.

Return type dataframe

56 Chapter 2. Contents

copro Documentation, Release 0.1.1

copro.evaluation.get_feature_importance

copro.evaluation.get_feature_importance(clf, config, out_dir)
Determines relative importance of each feature (i.e. variable) used. Must be used after model/classifier is fit.
Returns dataframe and saves it to csv too.

Parameters

• clf (classifier) – sklearn-classifier used in the simulation.

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• out_dir (str) – path to output folder. If ‘None’, no output is stored.

Raises Warning – raised if the chosen ML model has not built-in feature importances.

Returns dataframe containing feature importance.

Return type dataframe

copro.evaluation.get_permutation_importance

copro.evaluation.get_permutation_importance(clf, X_ft, Y, df_feat_imp, out_dir)
Returns a dataframe with the mean permutation importance of the features used to train a RF tree model.
Dataframe is stored to output directory as csv-file.

Parameters

• clf (classifier) – sklearn-classifier used in the simulation.

• X_ft (array) – X-array containing variable values after scaling.

• Y (array) – Y-array containing conflict data.

• df_feat_imp (dataframe) – dataframe containing feature importances to align names
across outputs.

• out_dir (str) – path to output folder. If ‘None’, no output is stored.

Returns contains mean permutation importance for each feature.

Return type dataframe

2.7.9 Plotting

plots.selected_polygons Creates a plotting instance of the boundaries of all se-
lected polygons.

plots.selected_conflicts Creates a plotting instance of the best casualties esti-
mates of the selected conflicts.

plots.metrics_distribution Plots the value distribution of a range of evaluation met-
rics based on all model simulations.

plots.correlation_matrix Plots the correlation matrix of a dataframe.
plots.plot_ROC_curve_n_times Plots the ROC-curve per model simulation to a pre-

initiated matplotlib-instance.
plots.plot_ROC_curve_n_mean Plots the mean ROC-curve to a pre-initiated matplotlib-

instance.

2.7. API docs 57

copro Documentation, Release 0.1.1

copro.plots.selected_polygons

copro.plots.selected_polygons(polygon_gdf, **kwargs)
Creates a plotting instance of the boundaries of all selected polygons.

Parameters polygon_gdf (geo-dataframe) – geo-dataframe containing the selected polygons.

Kwargs: Geopandas-supported keyword arguments.

Returns Matplotlib axis object.

Return type ax

copro.plots.selected_conflicts

copro.plots.selected_conflicts(conflict_gdf, **kwargs)
Creates a plotting instance of the best casualties estimates of the selected conflicts.

Parameters conflict_gdf (geo-dataframe) – geo-dataframe containing the selected conflicts.

Kwargs: Geopandas-supported keyword arguments.

Returns Matplotlib axis object.

Return type ax

copro.plots.metrics_distribution

copro.plots.metrics_distribution(out_dict, metrics, **kwargs)
Plots the value distribution of a range of evaluation metrics based on all model simulations.

Parameters out_dict (dict) – dictionary containing metrics score for various metrics and all sim-
ulation.

Kwargs: Matplotlib-supported keyword arguments.

Returns Matplotlib axis object.

Return type ax

copro.plots.correlation_matrix

copro.plots.correlation_matrix(df, **kwargs)
Plots the correlation matrix of a dataframe.

Parameters df (dataframe) – dataframe containing columns to be correlated.

Kwargs: Seaborn-supported keyword arguments.

Returns Matplotlib axis object.

Return type ax

58 Chapter 2. Contents

copro Documentation, Release 0.1.1

copro.plots.plot_ROC_curve_n_times

copro.plots.plot_ROC_curve_n_times(ax, clf, X_test, y_test, tprs, aucs, mean_fpr, **kwargs)
Plots the ROC-curve per model simulation to a pre-initiated matplotlib-instance.

Parameters

• ax (axis) – axis of pre-initaited matplotlib-instance

• clf (classifier) – sklearn-classifier used in the simulation.

• X_test (array) – array containing test-sample variable values.

• y_test (list) – list containing test-sample conflict data.

• tprs (list) – list with false positive rates.

• aucs (list) – list with area-under-curve values.

• mean_fpr (array) – array with mean false positive rate.

Returns lists with true positive rates and area-under-curve values per plot.

Return type list

copro.plots.plot_ROC_curve_n_mean

copro.plots.plot_ROC_curve_n_mean(ax, tprs, aucs, mean_fpr, **kwargs)
Plots the mean ROC-curve to a pre-initiated matplotlib-instance.

Parameters

• ax (axis) – axis of pre-initaited matplotlib-instance

• tprs (list) – list with false positive rates.

• aucs (list) – list with area-under-curve values.

• mean_fpr (array) – array with mean false positive rate.

2.7.10 Auxiliary functions

utils.print_model_info click.echos a header with main model information.
utils.get_geodataframe Georeferences a pandas dataframe using longitude and

latitude columns of that dataframe.
utils.show_versions click.echos the version numbers by the main python-

packages used.
utils.parse_settings Reads the model configuration file.
utils.parse_projection_settings This function parses the (various) cfg-files for projec-

tions.
utils.determine_projection_period Determines the period for which projections need to be

made.
utils.make_output_dir Creates the output folder at location specfied in cfg-file,

and returns dictionary with config-objects and out-dir
per run.

utils.download_UCDP If specfied in cfg-file, the PRIO/UCDP data is directly
downloaded and used as model input.

utils.initiate_setup Initiates the model set-up.
continues on next page

2.7. API docs 59

copro Documentation, Release 0.1.1

Table 10 – continued from previous page
utils.create_artificial_Y Creates an array with identical percentage of conflict

points as input array.
utils.global_ID_geom_info Retrieves unique ID and geometry information from

geo-dataframe for a global look-up dataframe.
utils.get_conflict_datapoints_only Filters out only those polygons where conflict was actu-

ally observed in the test-sample.
utils.save_to_csv Saves an dictionary to csv-file.
utils.save_to_npy Saves an argument (either dictionary or dataframe) to

npy-file.

copro.utils.print_model_info

copro.utils.print_model_info()
click.echos a header with main model information.

copro.utils.get_geodataframe

copro.utils.get_geodataframe(config, root_dir, longitude='longitude', latitude='latitude', crs='EPSG:4326')
Georeferences a pandas dataframe using longitude and latitude columns of that dataframe.

Parameters

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• root_dir (str) – path to location of cfg-file.

• longitude (str, optional) – column name with longitude coordinates. Defaults to ‘lon-
gitude’.

• latitude (str, optional) – column name with latitude coordinates. Defaults to ‘lati-
tude’.

• crs (str, optional) – coordinate system to be used for georeferencing. Defaults to
‘EPSG:4326’.

Returns geo-referenced conflict data.

Return type geo-dataframe

copro.utils.show_versions

copro.utils.show_versions()
click.echos the version numbers by the main python-packages used.

60 Chapter 2. Contents

copro Documentation, Release 0.1.1

copro.utils.parse_settings

copro.utils.parse_settings(settings_file)
Reads the model configuration file.

Parameters settings_file (str) – path to settings-file (cfg-file).

Returns parsed model configuration.

Return type ConfigParser-object

copro.utils.parse_projection_settings

copro.utils.parse_projection_settings(config, root_dir)
This function parses the (various) cfg-files for projections. These cfg-files need to be specified one by one in the
PROJ_files section of the cfg-file for the reference run. The function returns then a dictionary with the name of
the run and the associated config-object.

Parameters config (ConfigParser-object) – object containing the parsed configuration-
settings of the model for the reference run.

Returns dictionary with name and config-object per specified projection run.

Return type dict

copro.utils.determine_projection_period

copro.utils.determine_projection_period(config_REF, config_PROJ)
Determines the period for which projections need to be made. This is defined as the period between the end year
of the reference run and the specified projection year for each projection.

Parameters

• config_REF (ConfigParser-object) – object containing the parsed configuration-
settings of the model for the reference run.

• config_PROJ (ConfigParser-object) – object containing the parsed configuration-
settings of the model for a projection run..

Returns list containing all years of the projection period.

Return type list

copro.utils.make_output_dir

copro.utils.make_output_dir(config, root_dir, config_dict)
Creates the output folder at location specfied in cfg-file, and returns dictionary with config-objects and out-dir
per run.

Parameters

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• root_dir (str) – absolute path to location of configurations-file

• config_dict (dict) – dictionary containing config-objects per projection.

Returns dictionary containing config-objects and output directories for reference run and all projec-
tion runs.

2.7. API docs 61

copro Documentation, Release 0.1.1

Return type dict

copro.utils.download_UCDP

copro.utils.download_UCDP(config, root_dir)
If specfied in cfg-file, the PRIO/UCDP data is directly downloaded and used as model input.

Parameters

• config (ConfigParser-object) – object containing the parsed configuration-settings of
the model.

• root_dir (str) – absolute path to location of configurations-file

copro.utils.initiate_setup

copro.utils.initiate_setup(settings_file, verbose=None)
Initiates the model set-up. It parses the cfg-file, creates an output folder, copies the cfg-file to the output folder,
and, if specified, downloads conflict data.

Parameters

• settings_file (str) – path to settings-file (cfg-file).

• verbose (bool, optional) – whether model is verbose or not, e.g. click.echos DEBUG
output or not. If None, then the setting in cfg-file counts. Otherwise verbose can be set
directly to function which superseded the cfg-file. Defaults to None.

Returns parsed model configuration. out_dir_list: list with paths to output folders; first main output
folder, then reference run folder, then (multiple) folders for projection runs. root_dir: path to
location of cfg-file.

Return type ConfigParser-object

copro.utils.create_artificial_Y

copro.utils.create_artificial_Y(Y)
Creates an array with identical percentage of conflict points as input array.

Parameters Y (array) – original array containing binary conflict classifier data.

Returns array with reshuffled conflict classifier data.

Return type array

copro.utils.global_ID_geom_info

copro.utils.global_ID_geom_info(gdf)
Retrieves unique ID and geometry information from geo-dataframe for a global look-up dataframe. The IDs
currently supported are ‘name’ or ‘watprovID’.

Parameters gdf (geo-dataframe) – containing all polygons used in the model.

Returns look-up dataframe associated ID with geometry

Return type dataframe

62 Chapter 2. Contents

copro Documentation, Release 0.1.1

copro.utils.get_conflict_datapoints_only

copro.utils.get_conflict_datapoints_only(X_df, y_df)
Filters out only those polygons where conflict was actually observed in the test-sample.

Parameters

• X_df (dataframe) – variable values per polygon.

• y_df (dataframe) – conflict data per polygon.

Returns variable values for polyons where conflict was observed. dataframe: conflict data for
polyons where conflict was observed.

Return type dataframe

copro.utils.save_to_csv

copro.utils.save_to_csv(arg, out_dir, fname)
Saves an dictionary to csv-file.

Parameters

• arg (dict) – dictionary or dataframe to be saved.

• out_dir (str) – path to output folder.

• fname (str) – name of stored item.

copro.utils.save_to_npy

copro.utils.save_to_npy(arg, out_dir, fname)
Saves an argument (either dictionary or dataframe) to npy-file.

Parameters

• arg (dict or dataframe) – dictionary or dataframe to be saved.

• out_dir (str) – path to output folder.

• fname (str) – name of stored item.

2.7. API docs 63

copro Documentation, Release 0.1.1

64 Chapter 2. Contents

CHAPTER

THREE

AUTHORS

• Jannis M. Hoch (Utrecht University)

• Sophie de Bruin (Utrecht University, PBL)

• Niko Wanders (Utrecht University)

Corresponding author: Jannis M. Hoch (j.m.hoch@uu.nl)

65

mailto:j.m.hoch@uu.nl

copro Documentation, Release 0.1.1

66 Chapter 3. Authors

CHAPTER

FOUR

INDICES AND TABLES

• search

• genindex

67

copro Documentation, Release 0.1.1

68 Chapter 4. Indices and tables

INDEX

A
all_data() (in module copro.models), 39

C
calc_conflicts_nb() (in module copro.conflict), 52
calc_correlation_matrix() (in module co-

pro.evaluation), 56
climate_zoning() (in module copro.selection), 43
clip_to_extent() (in module copro.selection), 42
conflict_in_previous_year() (in module co-

pro.conflict), 51
conflict_in_year_bool() (in module copro.conflict),

50
correlation_matrix() (in module copro.plots), 58
create_artificial_Y() (in module copro.utils), 62
create_XY() (in module copro.pipeline), 37

D
define_model() (in module copro.machine_learning),

44
define_scaling() (in module co-

pro.machine_learning), 43
determine_projection_period() (in module co-

pro.utils), 61
download_UCDP() (in module copro.utils), 62
dubbelsteen() (in module copro.models), 40

E
evaluate_prediction() (in module copro.evaluation),

55

F
fill_out_df() (in module copro.evaluation), 55
fill_out_dict() (in module copro.evaluation), 54
fill_X_conflict() (in module copro.data), 49
fill_X_sample() (in module copro.data), 48
fill_XY() (in module copro.data), 48
filter_conflict_properties() (in module co-

pro.selection), 42
find_neighbors() (in module copro.data), 50
fit_predict() (in module copro.machine_learning), 44

G
get_conflict_datapoints_only() (in module co-

pro.utils), 63
get_feature_importance() (in module co-

pro.evaluation), 57
get_geodataframe() (in module copro.utils), 60
get_permutation_importance() (in module co-

pro.evaluation), 57
get_poly_geometry() (in module copro.conflict), 53
get_poly_ID() (in module copro.conflict), 52
get_pred_conflict_geometry() (in module co-

pro.conflict), 53
global_ID_geom_info() (in module copro.utils), 62

I
init_out_df() (in module copro.evaluation), 55
init_out_dict() (in module copro.evaluation), 54
init_out_ROC_curve() (in module copro.evaluation),

56
initiate_setup() (in module copro.utils), 62
initiate_X_data() (in module copro.data), 48
initiate_XY_data() (in module copro.data), 47

L
leave_one_out() (in module copro.models), 39
load_clfs() (in module copro.machine_learning), 45

M
make_output_dir() (in module copro.utils), 61
metrics_distribution() (in module copro.plots), 58

N
nc_with_continous_datetime_timestamp() (in

module copro.variables), 46
nc_with_float_timestamp() (in module co-

pro.variables), 46
neighboring_polys() (in module copro.data), 49

P
parse_projection_settings() (in module co-

pro.utils), 61

69

copro Documentation, Release 0.1.1

parse_settings() (in module copro.utils), 61
pickle_clf() (in module copro.machine_learning), 45
plot_ROC_curve_n_mean() (in module copro.plots), 59
plot_ROC_curve_n_times() (in module copro.plots),

59
polygon_model_accuracy() (in module co-

pro.evaluation), 55
predictive() (in module copro.models), 41
prepare_ML() (in module copro.pipeline), 37
print_model_info() (in module copro.utils), 60

R
read_projected_conflict() (in module co-

pro.conflict), 52
run_prediction() (in module copro.pipeline), 38
run_reference() (in module copro.pipeline), 38

S
save_out_ROC_curve() (in module copro.evaluation),

56
save_to_csv() (in module copro.utils), 63
save_to_npy() (in module copro.utils), 63
select() (in module copro.selection), 41
select_period() (in module copro.selection), 42
selected_conflicts() (in module copro.plots), 58
selected_polygons() (in module copro.plots), 58
show_versions() (in module copro.utils), 60
single_variables() (in module copro.models), 40
split_conflict_geom_data() (in module co-

pro.conflict), 53
split_scale_train_test_split() (in module co-

pro.machine_learning), 44
split_XY_data() (in module copro.data), 49

70 Index

	Main goal
	Contents
	Installation
	From GitHub
	From PyPI
	From conda

	Model execution
	Runner script
	Binder

	Settings
	The cfg-file
	The sections
	[general]
	[settings]
	[PROJ_files]
	[pre_calc]
	[extent]
	[conflict]
	[climate]
	[data]
	[machine_learning]

	Workflow
	Model initialization and selection procedure
	Model initialization
	The configurations-file (cfg-file)
	Filter conflicts and spatial aggregation units
	Background
	Selection procedure

	Temporary files

	Obtaining samples matrix and target values
	Preparations
	The configurations-file (cfg-file)

	Reading the files and storing the data
	Background
	Implementation
	Saving data to file

	Temporary files

	Initializing and executing the machine-learning model
	Preparations
	The configurations-file (cfg-file)

	Loading the XY-data
	Scaler and classifier
	Background
	Implementation

	Output initialization
	ML-model execution
	Model evaluation
	For all data points
	Per unique polygon

	Preparing for projections

	Projecting conflict risk
	Preparations
	The configurations-file (cfg-file)
	Project!
	Analysis of projection
	Projection output

	Output
	Output folder structure
	List of output files
	_REF
	Conflict risk per polygon

	_PROJ
	Conflict risk per polygon

	Postprocessing
	plot_value_over_time.py
	avg_over_time.py
	plot_polygon_vals.py
	geojson2gif.py

	API docs
	The model pipeline
	copro.pipeline.create_XY
	copro.pipeline.prepare_ML
	copro.pipeline.run_reference
	copro.pipeline.run_prediction

	The various models
	copro.models.all_data
	copro.models.leave_one_out
	copro.models.single_variables
	copro.models.dubbelsteen
	copro.models.predictive

	Selecting polygons and conflicts
	copro.selection.select
	copro.selection.filter_conflict_properties
	copro.selection.select_period
	copro.selection.clip_to_extent
	copro.selection.climate_zoning

	Machine learning
	copro.machine_learning.define_scaling
	copro.machine_learning.define_model
	copro.machine_learning.split_scale_train_test_split
	copro.machine_learning.fit_predict
	copro.machine_learning.pickle_clf
	copro.machine_learning.load_clfs

	Variable values
	copro.variables.nc_with_float_timestamp
	copro.variables.nc_with_continous_datetime_timestamp

	XY-Data
	copro.data.initiate_XY_data
	copro.data.initiate_X_data
	copro.data.fill_XY
	copro.data.fill_X_sample
	copro.data.fill_X_conflict
	copro.data.split_XY_data
	copro.data.neighboring_polys
	copro.data.find_neighbors

	Work with conflict data
	copro.conflict.conflict_in_year_bool
	copro.conflict.conflict_in_previous_year
	copro.conflict.read_projected_conflict
	copro.conflict.calc_conflicts_nb
	copro.conflict.get_poly_ID
	copro.conflict.get_poly_geometry
	copro.conflict.split_conflict_geom_data
	copro.conflict.get_pred_conflict_geometry

	Model evaluation
	copro.evaluation.init_out_dict
	copro.evaluation.fill_out_dict
	copro.evaluation.init_out_df
	copro.evaluation.fill_out_df
	copro.evaluation.evaluate_prediction
	copro.evaluation.polygon_model_accuracy
	copro.evaluation.init_out_ROC_curve
	copro.evaluation.save_out_ROC_curve
	copro.evaluation.calc_correlation_matrix
	copro.evaluation.get_feature_importance
	copro.evaluation.get_permutation_importance

	Plotting
	copro.plots.selected_polygons
	copro.plots.selected_conflicts
	copro.plots.metrics_distribution
	copro.plots.correlation_matrix
	copro.plots.plot_ROC_curve_n_times
	copro.plots.plot_ROC_curve_n_mean

	Auxiliary functions
	copro.utils.print_model_info
	copro.utils.get_geodataframe
	copro.utils.show_versions
	copro.utils.parse_settings
	copro.utils.parse_projection_settings
	copro.utils.determine_projection_period
	copro.utils.make_output_dir
	copro.utils.download_UCDP
	copro.utils.initiate_setup
	copro.utils.create_artificial_Y
	copro.utils.global_ID_geom_info
	copro.utils.get_conflict_datapoints_only
	copro.utils.save_to_csv
	copro.utils.save_to_npy

	Authors
	Indices and tables
	Index

